




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、精心整理“图形的分割与拼接”专项复习本讲主要学习三大图形处理方法:1 .理解掌握图形的分割;2 .理解掌握图形的拼合;3 .理解图形的剪拼.本讲中很多类型的题目还要求同学们去动手尝试. 通过本讲知识的学习,让同学们了解不同图 形的分割、拼合、剪拼的方法,锻炼同学们的平面想象能力以及增强学生的动手操作能力.把一个几何图形按某种要求分成几个图形,就叫做图形的分割.反过来,按一定的要求也可以把几个图形拼成一个完美的图形,就叫做图形的拼合.将一个或者多个图形先分割开,再拼成一种指定的图形,则叫做图形的剪拼.我们在图形的分割、拼合和剪拼的过程中,都要结合所提供的图形特点来思考.如果把一个图形分割成若干个
2、大小、形状相等的部分,那么就要想办法找图形的对称点,把图 形先分少,再分多.图形中,如果有数量方面的要求,可以先从数量入手,找出平分后每块上所含数量的多少,再结合数量来分割图形.如果是要把几个图形拼合成一个大图形,要特别注意每条边的长度,把相等的边长拼合在一起, 先拼少的,再拼多的.如果是剪拼图形,要抓住“剪、拼前后图形的面积相等”这个关键,根据已知条件和图形的特 点,通过分析推理和必要的计算,确定剪拼的方法.【典型例题】板块一图形的分割【例11用一条线段把一个长方形平均分割成两块,一共有多少种不同的分割法?【解析】怎样把一个图形按照规定的要求分割成若干部分呢?这就是图形的分割问题.按照规定的
3、要求合理分割图形,是很讲究技巧的, 多做这种有趣的训练,可以培养学生的创造性思维,发展空间观念,丰富想象,提高观察能力.这道题要求把长方形平均分割成两块,过长方形中心的任意一条直线都可以把长方形平均分割成两 块,根据这点给出如下分法(如右图):做长方形的两条对角线,设交点为 O过O点任作一条直线AB,直线AB将长方形平均分割成两块.可见用线段平分长方形的分法是无穷多的.【巩固】画一条直线,将六边形分成大小相等、形状相同的两部分,这样的直线有条.【解析】无数条.任何过六边形中心的直线均符合要求.【例21把任意一个三角形分成面积相等的 4个小三角形,有许多种分法.请你画出 4种不同的分法.【解析】
4、 根据等底等高的三角形面积相等这一结论,只要把原三角形分成 4个等底等高的小三 角形,它们的面积必定相等.而要得到这4个等底等高的小三角形,只需把原三角形的某条边四等 分,再将各分点与这边相对的顶点连接起来就行了. 根据上面的分析,可得如左下图所示的三种分 法.又因为41= *4=2',2,所以,如果我们把每一个小三角形的面积看做 1,那么1父4就可以视为 把三角形的面积直接分成4等份,即分成4个面积为1的小三角形;而2M2可以视为先把原三角形分成两等份,再把每一份分别分成两等份. 根据前面的分析,在每次等分时,都要想办法找等底等 高的三角形.根据上面的分析,又可以得到如右下图的另两种
5、分法.【巩固】把任意一个三角形分成面积相等的 2个小三角形,有许多种分法.请你画出 3种不同的 分法.【解析】根据等底等高的三角形面积相等这一结论,只要把原三角形分成2个等底等高的小三角形, 它们的面积必定相等.而要得到这2个等底等高的小三角形,只需找出原三角形的某条边的中点与 这边相对的顶点连接起来就行了.根据上面的分析,可得如图所示的三种分法.【例3】怎样把一个等边三角形分别分成 8块和9块形状、大小都一样的三角形.【解析】分成8块的方法是:先取各边的中点并把它们连接起来,得到4个大小、形状相同的三角形,然后再把每一个三角形分成两部分,得到如左上图所示的图形.分成9块的方法是:先把每边三等
6、分,然后再把分点彼此连接起来,得到加上右上图所示的符合 条件的图形.【例41下图是一个直角梯形,请你画一条线段,把它分成两个形状相同并且面积相等的四边形.【解析】直角梯形的上底为1,下底为2,要分成两个相同的四边形,需要一条边可以分成 1和2,AD边长正好为3,所以AD边分成两段,找到AD的三等分点E ,现在,CD =AE , DE = AB , BF=EF, 所以还要找到BC的中点F ,连接EF ,就把梯形ABCD分成完全相同的两部分.如右上图.【例51在一块长方形的地里有一正方形的水池(如下图).试画一条直线把除开水池外的这块地平分成两块.【解析】用连对角线的办法找出这块长方形地的中心 O
7、和正方形水池的中心 A.过O、A画一条直线,这条直线正好能把除开水池外的这块地平分为两块(如右上图).【例6】把下图四等分,要求剪成的每个小图形形状、大小都一样.除了剪正方形外,你还有别的方法吗?【解析】先把图形分成20M40相等的两块,每一块中再分成相等的两份,这样就不难分成四块了,如 右上图.【例7】下图是一个3父4的方格纸,请用四种不同的方法将它分割成完全相同的两部分,但要保持每个小方格的完整.【解析】分成的两块每块有12个2 =6(个)小格,并且这两块要关于中心点对称,大小和形状完全一 样,我们从对称线入手,介绍一种分割技巧一一染色法,先选中一个小格,找它关于中心点或中心 线的对称位置
8、,标上相应的符号.当找它关于中心线的对称位置时是一种情况,关于中心点的对称位置是另一种情况,具体如下图所示.【巩固】右图是一个4父4的方格纸,请用六种不同的方法将它分割成完全相同的两部分,但要保 持每个小方格的完整.【解析】因为要分割成完全相同的两块,即大小、形状完全相同.方格纸一共有4父4=16(个)小格,所以分成的两块每块有16-2=8(个)小格,并且这两块要关于中心点对称,大小和形状完全一样, 应用染色法,从中心点的一侧入手染色,逐步推进.(建议教师同时呈现六幅空的4x4格图,不同的变化在不同的图上同时呈现)如下图:【例8】下图是一个被挖去了为总面积四分之一小正方形的大正方形,请你将它分
9、成大小形状完全一样的四部分.【解析】要求把阴影部分分成四个大小、形状都相同的四个图形,先不考虑形状,大小相同也就是面积相等,也就是把整个图形的面积分成四份, 分割后的每一部分占一份.考虑先把阴影部分分成12个小正方形再分成四份,这样每份正好有3个小正方形.再看形状,三个小正方形只能排成“-” 形或者形.答案如下图.【巩固】下图是一个被挖去了为总面积四分之一小正方形的大正方形,请你将它分成大小形状完 全一样的两部分.如果分三部分呢?【解析】从形状,面积两方面综合考虑,很容易就能得到答案.答案如右上图.【巩固】图中是由三个正三角形组成的梯形. 你能把它分割成4个形状相同、面积相等的梯形吗?【解析】
10、这道题的要点在于通过计算解决问题,要求把原来三个正三角形分成四个大小、形状都相同的四个梯形,先不考虑形状,大小相同也就是面积相等,即把整个梯形的面积分成四份,分割后I的每一个梯形占一份,可以考虑把每一个三角形的面积分成四份, 再把三个正三角形中的每一个小 三角形合成要求的梯形,这种类型的题目可以从中点入手,找到每个正三角形的中点并连接,如右 上图.【例9】下图是由五个正方形组成的图形.把它分成形状、大小都相同的四个图形,应怎样分?【解析】如果不考虑分成的四个图形的形状,只考虑它们的面积,这就要求把原来五个正方形分成四个面积相等的图形,每个图形的面积应是1个多正方形.我们把每个正方形各分成四个面
11、积相等 的小正方形,分成的每块图形应有五个这样的小正方形. 根据图形的对称性,我们很快就能得到如 右上图的分法.也可以将中间的正方形分成四个小正方形,如右上图.【例10】 已知左下图是由同样大小的 5个正方形组成的.试将图形分割成 4块形状、大小都一样的图形.【解析】已知图形是由同样大小的5个正方形组成的,要分成4块同样大小的图形,则每块图形是5个正方形.由此想到,若把每个正方形都分成 4等份,则分割成的每一块中应包含 5份.再 4稍经试验,即得右上图的解(图内部的实线为分割线).【巩固】把右图剪成形状、大小相等的 8个小图形,怎么剪?作出分出的小图形.【解析】总格数为12,用总格数除以8,得
12、到每个小图形应该是一个半小正方形,根据平均一个小图形的格数作图,如右图.【例11】卜图是由18个小正方形组成的图形,请你把它分成6个完全相同的图形.【解析】通过计算,18与=3,说明基本形状是由三个小正方形组成,三个正方形有两种形式:通过观察,上面的图形具有对称性,不可能分成6个,再由6结合染色法,如下图.【例12】一个正三角形形状的土地上有四棵大树(如下图所示),现要把这块正三角形的土地分成和它形状 相同的四小块,并且要求每块地中都要有一棵大树.应怎样分?【解析】由于土地的形状为正三角形,由题意可知,把大三角形的面积分成四份,每一块占一份, 且形状与原三角形相同,于是我们想到取大正三角形的各
13、边中点, 依次连接各边中点,即可将这块 大正三角形的土地分成与它相等的四份,如右上图所示.【总结】本题若死守三角形面积等于底M高的一半,则无以下手,引导学生转换一下思考角度,取 原三角形各边中点,将原三角形分成面积相等的四部分,问题即可解决.【例13】 将下图分割成大小、形状相同的三块,使每一小块中都含有一个。.【解析】图中一共有18个小方格,要求分割成大小、形状相同的三块,每一块有:18 + 3 = 6(块),而且分割成大小、形状相同的三块,可以看出图形的中心点是O,而且上面的部分是对称的,但是只有5块,需要对称的再加上一块,再由图形的特点,可以判断应分为右下图的三部分.【例14】 请把下面
14、这个长方形沿方格线剪成形状、大小都相同的4块,使每一块内都含有“奥数读本”这四个字中的一个,该怎么剪?【解析】图中“奥数”与“读本”中的两个字都是挨着帧以肯定要在它们中间分割,因此,首先在他 们中间划出分割线,因为要将这个长方形分成大小、形状完全相同的4块,因为长方形是6父4的,所以分割后的每一块都有6小块组成,可以考虑先把长方形分成相同的两部分, 再把每一部分分成 相同的两部分,如下图所示.答案不唯一.【例15】(2008年第八届“春蕾杯”小学数学邀请赛初赛 )请把下面的图形分成形状、大小都相同的4块,使每一块里面都有“春蕾杯赛”4个字.【解析】如下图所示:答案不唯一.【例16】 学习与思考
15、对小学生的发展是很重要的,学习改变命运,思考成就未来,请你将下图 分成形状和大小都相同的四个图形,并且使其中每个图形都含有“学习思考”这四个字.应怎样 分?【解析】看到这道题目,我们想到俄罗斯方块,由题意可知,所分出的每一块图形,必须由 4个小 正方形组成,它的形状不外乎如右上图所示的五种俄罗斯方块,这就控制了搜索的范围.根据原题中各个字的具体位置,上图中有些图形是必须排除的,例如,如果把图与原题右下角2父2的正方 形重叠,其中“考”字出现了两次,不符合题意,因此,图可以先排除掉.现在,冉固定某一角上 的一个小正方形,按其中的字来考虑.如固定右上角写有“考”的小正方形来分析,只有下列 4种可
16、能出现的情况:【例17 如下图所示,请将这个正方形分切成两块,使得两块的形状、大小都相同,并且每一块都含有学 而思奥数五个字.图1图2【解析】 图中有相同汉字挨在一起的情况, 肯定要从它们之间切开(图1),因此,首先要在它们之间划出切分线. 因 为要将这个正方形切开成两块形状和大小都一样的图形,所以其中一块绕中心点旋转 180 口必定与另一块重合.要 是把切分线也绕中心点旋转 180。就可得到一些新的切分线(图2).这就为我们解决问题提供了线索,本题的两种解法如上图所示.【巩固】如下图所示的正方形是由36个小正方格组成的.如图那样放着4颗黑子,4颗白子,现在要把它切割成形状、大小都相同的四块,
17、并使每一块中都有一颗黑子和一颗白子.试问如何切割?【解析】 首先在相同颜色的棋子之间划出切分线,以中心旋转90、180)、270之后,得到一些新的切分线,同时考虑到每块包含有一颗黑子和一颗白子的要求,以及每一块面积应该是36 + 4=9,即含有9个小正方格,先找到符合要求的一块后,让它绕中心旋转90' > 180:'、270便得到其他三块,如右上图.【例18】 如图,甲、乙是两个大小一样的正方形.要求把每一个正方形分成四块,两个正方形共分为八块, 使每块的大小和形状都相同,而且都带一个。.甲乙【解析】一个正方形分成大小和形状都相同的四块,一定是从中心点分开的,只要能找出其
18、中符合题目要求的一块,然后再将这块绕着正方形的中心点分别旋转90,、180:'、270:'就可以得到另外三块.又因为这个正方形面积为36平方单位,所以分成的每一块的面积都是9平方单位.即每一块都由 9个小正方格组成.另外,由于两个正方形要切分成一样大小的四块,因此可将两个正方形重叠在一起考虑.将两个正方形重叠在一起,如下图所示,为便于区别,将其中一组的改写成“X” .按要求将这重叠的正方形切分成大小、形状都相同的四块,并且每块都有一个和“X” .图中有相同符号的挨在一起的从中间把它们切开,在它们中间划上截线.并将这些截线绕中心点旋转9。1、180:'、270:得到另外三
19、段截线.如下图.利用它们设想出划分线.设想分块从中心位置开始,逐步向外扩散,在里层方格中,先指定某一方格已分入到某小块中,并作上记号(斜线阴影),然后将它绕中心旋转180,后得到另一方格分入到另一小块中,也作上记号(横线阴影),如图.对于中间一层方格和最外一层方格,设想分块时一定要紧扣条件:每一块中都要有一个和一个“ 父” .每一块都有9个方格组成,不能断开.下图是分解了的分块过程示意图.注意到斜线阴影部分已经有了一个和一个“父” .那么左下角包含的方格就不能再分到斜线阴影部分去了,而只能将右下角的方格分到斜线阴影部分.于是左上角的方格就应该分给横线阴影部分.空白部分是另外两块. 下就是最后分
20、得的结果.【例19】 正三角形ABC的面积是1平方米,将三条边分别向两端各延长一倍,连结六个端点得到一个六边 形(如右图),求六边形的面积.【解析】采用分割法,过A、B、C分别作平行线,得到右上图,其中所有小三角形的面积都相同,所以六边形面积等于13平方米.【巩固】正方形ABCD的面积是1平方米,将四条边分别向两端各延长一倍,连结八个端点得到一个正方形(如图),求大正方形的面积.【解析】四条边分别向两端各延长一倍,很容易可以观察出,大正方形有9个小正方形组成,所以,大正方形的面积是:1父9=9(平方米).【巩固】正六边形ABCDEF的面积是1平方米,将六条边分别向两端各延长一倍,交于六个点,组
21、 成如下图的图形,求这个图形的面积.【解析】采用分割法,连接正六边形的对角线,会发现,所有的三角形面积都相同,一共有 12个小三角形,原来正六边形的面积是1平方米,由6个小三角形组成,所以现在的大图形的面积是:1父2 =2(平方米)【例20(第九届“中环杯”小学生思维能力训练活动初赛 )如图,它是由15个边长为1厘米的小正方形组成 的.请在原图中沿正方形的边线,把它划分为5个大小形状完全相同的图形,分割线用笔描粗.分割后每个小图形的周长是厘米.分割后5个小图形的周长总和与原来大图形的周长相差厘米.【分析】因为总共有15个小正方形,所以分成5个大小形状相同的图形后每个图形应该有15+5=3(个)
22、小正方形,如图.每个小图形的周长为8厘米.5个小图形的周长和:8父5=40(厘米),原图形的周长:4x4+2=18(厘米),所以相差4018 = 22(厘 米).【例21 如何把下图中的三个图形分割成两个相同的部分(除了沿正方形的边进行分割外,还可沿正方形的对角线进行分割).【解析】要把图形分成两个相同的部分,首先要保证分得的两部分面积相同,其次要保证分得的两部分形状相同,从面积入手进行分割会使问题更容易解决.第一个图形一共有6个小正方形,2个三角形,要分割成两块完全相同的部分,每一部分都要有3个正方形、1个三角形,这样很容易就可以解决这个问题了;同样,对第二个图形,一共有7个正方形,2个三角
23、形,因为正方形的个数是奇数,所以,肯定有一个正方形被分成相同的两块, 对于这个图形,我们很容易看出有一个 正方形的位置很特殊,在最中间,所以考虑将它分成两部分,由对称的原则,从对角线分开;第三 个图形更复杂一些,一共有6个正方形,6个三角形,分成的两块每一块都要有 3个正方形、3个 三角形,因为最上面的两个三角形组合成了一个大的三角形,所以右下方的两个三角形不能分开,再根据对称的原则,就容易解决这个问题了,具体分法见下图.【例22 (2003年小学生数学报数学邀请赛 )如图,将一个等边三角形分割成互相不重叠的23个较小的等边三角形(这些较小的等边三角形的大小不一定都相同),请在图中画出分割的结
24、果.【解析】分割的方法不唯一,如图所示.【例23】(2005年小学生数学报数学邀请赛)如图,将一个正方形分割成互相不重叠的 21 个小正方形,这些小正方形的大小不一定相同,请画图表示.【解析】分割的方法不唯一,如右图所示.板块二图形的拼合【例24】用两块大小一样的等腰直角三角形能拼成几种常见的图形?【解析】建议用等腰直角三角板,把不同的边进行重合,不要漏掉旋转重合,或者准备一些等腰直 角三角形的纸片,由学生拼接后贴到黑板上,见下图:【巩固】用3个等腰直角三角形拼图,要求边与边完全重合,能拼出几种图形?【解析】这种类型的题需要学生亲自操作,建议教师准备材料与学生互动.一共可以拼成如下图的几 种形
25、状:【巩固】用同样大小的四块等腰直角三角板,能否拼出一个三角形、一个正方形、一个长方形、 一个梯形、一个平行四边形五种图形?若能,画出示意图.【解析】能用四块同样大小的等腰直角三角板拼出一个三角形、一个正方形、一个长方形、一个梯形、一个平行四边形五种图形.建议用等腰直角三角板,把不同的边进行重合,不要漏掉旋转重合,或者准备一些等腰直角三角形的纸片,由学生拼接后贴到黑板上,具体拼法如图所示. 【例25 下面哪些图形自身用4次就能拼成一个正方形?【解析】用4块图(4)和图(5)那样的图形显然能够拼成一个大正方形. 其实用图(1)、图(2)、图(3) 也能拼成一个大正方形,拼法见下图.【例26】 用
26、下面的3个图形,拼成右边的大正方形.【解析】首先数一数所有的空格数,一共只有16个,只能组成4父4的正方形,使用目标倒推法,在右边的大正方形中拼图,仍然使用染色法,相当于把已知图形往右边的大正方形中放,这样就很容易拼合了,如下图:【巩固】用“四连块”拼成一个正方形,按编号画入右边图中.【解析】首先数一数所有的空格数,一共只有16个,只能组成4M4的正方形,目标倒推,在右边的大正方形中拼图,仍然使用染色法,相当于把已知图形往右边的大正方形中放,这样就很容易拼成了,注意标号的位置,具体如下图所示:【例27】 有6个完全相同的匚口 ,你能将它们拼成下面的形状吗?【解析】利用染色法以及图形的对称性,对
27、称轴两侧都有三个小图形,按照下面的顺序标号即可完成.【例28(保良局亚洲区城市小学数学邀请赛 )三种塑料板的型号如图:(A)( B)( C)已有A型板30块,要购买B、C两种型号板若干,拼成 5父5正方形10个,B型板每块价格5元,C型板每块价格为4元.请你考虑要各买多少块,使所花的总钱数尽可能少,那么购买B、C两种板要花多少元?【解析】 要使花的钱尽可能的少,已有 30个A型板最好能用上,而价格较贵的B型板尽可能少用,因为 A型与B型的面积都为3,所以在拼成的5父5的正方形中,除了 C型外,余下的面积应能被 3整除.有25-4父4 = 9或 25 TM1=21能被3整除知,只能用 4块C型板
28、或1块C型板,考虑尽可能多地使用 A型板,有如下图1、图2 的拼法: 图1图2图1的拼法要花4M4+5父2 =26(元),图2的拼法要花4+5=9(元),因为只有30块A型板,所以在10快5M 5的 正方形中,图2的拼法只能有4块,剩下6块用图1拼法,共需:9M4+266=192(元)【例29】试用图a中的8个相等的直角三角形,拼成图 b中的空心正八边形和图c中的空心正八角星.【解析】把一个直角三角形的斜边与另一个直角三角形的一条直角边重合,同时,斜边上的一个锐 角顶点与直角顶点重合,像这样依次摆放下去,便可得空心正八边形.若把一个直角三角形的斜边与另一个直角三角形的直角边的一部分重合,但顶点
29、均不重合,依次摆放下去,便可由这八个相等的直角三角形组成空心正八角星.板块三图形的剪拼【例30】 试将一个正方形分成相同的四块,然后用这四块分别拼成三角形、平行四边形和梯形.【解析】要用分成的四块组成三角形,那么剪成得图形一定是三角形,这样平均分成四等分,当然这种分法有好几种.组成图形的时候我们可以换位思考,看如何将三角形、平行四边形、梯形分成大小相等的三角形.如图所示:精心整理 【例31】 把两个小正方形剪开以后拼成一个大正方形.【解析】因为大正方形的面积等于两个小正方形的面积和,所以大正方形的边长不能等于两个小正 方形的边长和,而是等于小正方形的对角线的长,所以要沿着两个小正方形的对角线剪
30、开再进行拼接,如右图.【例32】 将下图分成4个形状、大小都相同的图形,然后拼成一个正方形.【解析】总共有36块小正方形,所以最后拼成的大正方形边长有 6个单位,具体切拼方法如下: 【例33】 试将一个4父9的长方形分割成两个大小相等、 形状相同的图形,然后拼成一个正方形. 【解析】 已知长方形格数9黑4 =36(个),所以正方形的边长应为 6个格,因此可以把长方形上半部分成 3个格、6个格,下半部分成6个格、3个格,分成相等的两块,合起来正好拼成一个边长为6个格的正方形,如右下图.【巩固】长方形的长和宽各是 9厘米和4厘米,要把它剪成大小、形状都相同的两块,并使它们拼成一个正方形.【解析】已
31、知长方形面积9父4 =36(平方厘米),所以正方形的边长应为 6厘米,因此可以把长方形上半部剪下6厘米,下半部剪下 3厘米,分成相等的两块,合起来正好拼成一个边长为6厘米的正方形,如右下图.【例34】将下图分成两块,然后拼成一个正方形.【解析】图形的面积等于16个小方格,如果以每个小方格的边长为1,那么拼成的正方形的边长应 该是4.因为图形是缺角长方形,长为6,宽为3,应将宽加1,长减去2便可得一个正方形,所以 分割成两块后,右边的一块应向上平移 1(原来宽为3,向上平移使宽为4),向左平移2(原来长为 6,向左平移使长为4).如右下图所示.【例35】 将图1分成4个形状、大小都相同的图形,然
32、后拼成一个正方形.图1图2图3【解析】经过计数可以发现,图形是由16个完全一样的正方形组成,所以拼成的正方形每排都有 4 个这样的小正方形,共有4排把大图形分成完全一样的4个图形,每个图形的面积都是小正方形的 4倍.现在来考虑形状.由于这个图形具有对称的特点,很容易想到先将它分成两个完全一样的图 形,只要沿大图形中间的那条竖线剪开即可,其中上面的一个是图2,再想办法把已经分成的两个图形各分成两个形状、大小都相同的图形即可.下面以上面的图为例,继续探讨分割的办法.如果把上图中每个小正方形的边长看作 1个单位,那么这个图形中的最长边有 4个单位,其次为3;显 然,要把它分成完全一样的两个图形,每个
33、图形的最长边只能为3,具体分法见图3,用同样的方法,可以将与上面的图形完全一样的下面的一个图形分成两个形状、大小都相同的图形,如右上图.【例36】 小龙的妈妈在街上卖边角布料的地摊上,买回了一块形状是等腰直角三角形的绸布,想用它来做 长方形的窗帘,为了不把布剪的太碎,裁剪的块数就要尽可能的少,请问小龙的妈妈应该怎样剪拼呢?【解析】要使裁剪的块数少,就要充分利用等腰直角三角形的特点,还要尽可能多的让长方形的边 与三角形的边重合,假设拼好的长方形以BC为长,现在要把ADE补到CGE的位置上,这就要求 这两个三角形完全一样,显然,只要取 D、E分别为AB、AC的中点即可.所以首先连接AB的中点D和A
34、C的中点E,将4ADE沿DE剪开,再按顺时针方向旋转180°即可.如下图所示. 【例37】试将任意一个三角形分成三块,然后拼成一个长方形.【解析】方法一:三角形与长方形的不同在于:角、边的个数不同,把三角形变为四边形,需要加 一个角,加一条边,而且长方形四个角都是直角,自然能想到在三角形中做两条垂线, 并且过三角形两条边 的中点,这样才能拼出一个长方形,如左下图.精心整理方法二:因为由平行四边形转化为长方形很简单, 所以只需要把三角形先分割、拼凑成平行四边形, 作三角形的中位线,旋转180。即可转化为平行四边形,然后拼成长方形,如右下图.【巩固】试将任意一个矩形分成两块,然后拼成一个
35、三角形.方法一: 方法二:11【解析】方法一:考虑到矩形沿对角线可以分成两个相同的三角形,两个完全相同的三角形即可拼成一个大的三角形,如左上图所示.方法二:连接矩形一个角与一边中点的连线,将分割出的三角形沿中点处旋转180。即可,如右上|T I 1' / ? 图所小.【巩固】试将任意一个矩形分成三块,然后拼成一个三角形.方法一 : 一方法二:11【解析】将例题逆推即可.【例38】 把一个正方形分成8块,再把它们拼成一个正方形和一个长方形,使这个正方形和长 方形的面积相等.【解析】连接正方形的对角线,把正方形分成了4个相等的等腰直角三角形,再连接各腰中点,又把它们分成4个小等腰直角三角形
36、和 4个等腰梯形.(如图所示),出于分成正方形、长方形面积相等的要求考虑:分别取出 两个小等腰直角三角形和两个梯形,就能一一拼出所要求的正方形和长方形了(如图、所示).【例39】 有一块长8米、宽3米的长方形地毯,现在要把它移到长6米、宽4米的新房间里.请 找出一种剪裁方法,使剪后的各块拼合后正好能铺满房间的地面,为了使剪后的地毯尽量完整, 就要使剪裁的块数尽可能地少,应怎样剪拼?【解析】地毯的面积为8父3=24平方米,新房间的面积为6父4=24平方米,两者虽然长、宽不相等, 但面积相等.通过对比不难发现:地毯的长比房间的长多2米,房间的宽比地毯的宽多1米,因止匕, 我们可以把地毯看做由12个
37、2 M1(平方米)的小长方形组成的大长方形,如左下图所示,要达到题 目的要求,只要使原地毯的长缩短一小格.即减少2米,使原地毯的宽增加一小格,即增加 1米,我们可以沿对角线的方向,把它剪成阶梯形的两块,并使它们的形状和大小完全相同,如中间图, 然后把它们错位互相拼接在一起,即阴影部分先向上平行移动1米,再向右平行移动2米,即得右 下图.【例40如何把一个长20厘米、宽12厘米的长方形切成两块,拼成一个长16厘米、宽15厘米 的新长方形.图d图e【解析】因为原长方形比新长方形的长多 4厘米,新长方形比原长方形的宽多 3厘米,因此我们把 原长方形分成20个长4厘米,宽3厘米的小长方形.因为新长方形
38、的长为16厘米,所以原长方形 的长应减少一个小长方形,而新长方形的宽为15厘米,所以原长方形的宽应增加一个小长方形. 可 以沿对角线的方向,把它切成k阶梯状的两块,并使他们的形状和大小完全相同,然后把它们相互错位交在一起,即白色部分往上爬了一个台阶,这样便拼成了一个新的长方形.具体操作中可按图d中的粗线把长方形分成两块,一移一错一对,便可得到如图e所示的长为16厘米,宽为15厘米的新长方形.【例41 长方形长24厘米,宽15厘米.把它剪成两块,使它们拼成一个长 20厘米,宽18厘 米的长方形.【解析】 长方形面积=24黑15 =360(平方厘米),拼成的长方形面积 =20X18 = 360(平
39、方厘米),面积相等,只是 长、宽不等,但它们都可以分成30个40的小长方形,拼成的长方形的一半应有15个4M 3的小长方形,即5+4+3+2+1=15.所以才有如上图的剪切方法.【例42】 如下图长方形的长、宽分别为120厘米、90厘米,正中央开有小长方形孔,长为 80 厘米,宽为10厘米,要拼成面积为100平方厘米的正方形.问如何切分,能使划分的块数最少.【解析】 切分前面积为120M90 -80X10=10000(平方厘米),应与拼成后的正方形面积相等.拼成后正方形的边 长x=100厘米.因为:100=120-20=90+10.假设上图切成两块如下左图,然后将右块向上平移10厘米,再向左平移20厘米,就拼成了一个正方形,切分线不可能是直线,一定是折线段.切分后的两块类似阶梯形,然 后由两个阶梯互相啮合,组成一个正方
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中职教育中立德树人的实施心得体会
- 医疗机构员工潜能激励计划
- 大厚度自重湿陷性黄土场地超长钻孔灌注桩施工技术应用研究
- CVC维护操作流程在电子商务中的重要性
- 2025年中考英语作文题型分析及范文
- 人教版三年级数学班级管理计划
- 宴会服务承包合同
- 2025-2030年全球及中国创新管理行业市场现状供需分析及投资评估规划分析研究报告
- 2025-2030年全球及中国伊贝肯行业市场现状供需分析及投资评估规划分析研究报告
- 工程项目管理的协作与配合措施
- 临床内镜下粘膜剥离术(ESD)护理要点及健康教育
- 【含听力9英一模】合肥市蜀山区2024年中考一模英语
- 人有远近情有亲疏-《差序格局》说课稿 2024-2025学年统编版高中语文必修上册
- 保利拍卖行合同模板
- 小学一年级数学计算题共10087题
- 开发绿色建筑材料的研究与应用
- DB22T 2004-2014 空气甲醛现场检测仪
- 国家建设部110号文件《住宅室内装饰装修管理办法》
- 第五课+弘扬劳动精神、劳模精神、工匠精神【中职专用】中职思想政治《职业道德与法治》高效课堂(高教版2023·基础模块)
- 餐饮食品安全操作规范
- 无人机组装与调试 课件 项目一 多旋翼无人机组装调试
评论
0/150
提交评论