云南省玉溪市高考数学模拟试卷(11)及答案_第1页
云南省玉溪市高考数学模拟试卷(11)及答案_第2页
免费预览已结束,剩余25页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、云南省玉溪市高考数学模拟试卷(11) 、选择题:本大题共 10 小题,每小题 5 分,共 50 分在每小题给出的四个 选项中,只有一项是符合题目要求的. A. 6 B. 6 C. 5 D. 4 3. (5 分)设 m、n 是两条不同的直线,a $ 丫是三个不同的平面,给出下列 四个命题: 若 all $ all 丫,贝U Y 若a丄$ m / a,贝U m $ 若 m 丄a,m / $贝U a丄$ 若 m / n,n? a,则 m / a. 其中正确命题的序号是( ) A. B. C D. 4. (5 分)设函数 f (x) W3cos (2x+) +sin (2x+) (| ),且图象关于

2、直线 x=0 对称,则( ) A. y=f (x)的最小正周期为 n且在【6 今)上为增函数 B. y=f (x)的最小正周期为 n且在(0,弓 1)上为减函数 C. y=f (X)的最小正周期为,且在上为增函数 D. y=f (x)的最小正周期为闿,且在山 牛)上为减函数 5. (5 分)若程序框图输出 S 的值为 126,则判断框中应填入的条件是(是纯虚数, 则实数 a 的值为( (5 分) 若复数 (a R, i 为虚数单2. (5 分)函数产辿丄的图象大致是( ) D. 【开始 1 r n- = 1.S = Q A. n5 B. nW6 C. n7 D. n0,且 a20i3 (a2o

3、i2+a2oi3)v0, 则使数列an的前 n 项和 Sn0 成立的最大自然数 n 是( ) A. 4027 B. 4026 C. 4025 D. 4024 8. (5 分)M (X0, y)为圆 x2+y2=a2 (a 0)内异于圆心的一点,则直线 X0 x+yy=a2 与该圆的位置关系为( ) A.相切 B.相交 C相离 D.相切或相交 9 . ( 5 分)已知 n 为正偶数,用数学归纳法证明 时命题为真,则还需要用归纳假设再证 n=( )时等式成立. A . n=k+1 B . n=k+2 C. n=2k+2 D . n=2 (k+2) 10 . ( 5 分)已知向量,焉,不满足|二 T

4、 , I 药|二|竜| , 2 )为偶数) 时,若已假设 n,则对任意匸,m - n 的最小值是( )9 二、填空题:本大题共共 5 小题,每小题 5 分,共 25 分 11. (5 分)为了了解预防禽流感疫苗”的使用情况, 某市卫生部门对本地区 月份至 11 月份注射疫苗的所有养鸡场进行了调查,根据下图表提供的信息,可 以得出这三个月本地区每月注射了疫苗的鸡的数量平均为 万只. 月份 养鸡场(个数) 9 20 10 50 11 100 f鸡(万只) 2 - t 疔 - - 9 10 11 月悅 (5 分)一个几何体的三视图如图所示,主视图与俯视图都是一边长为 的矩形,左视图是一个边长为 2c

5、m 的等边三角形,则这个几何体的体积 各养鸡场注融 了疫苗的鶏的 数量平均数 12. (5 分)二项式 )山展开式中的第 项是常数项. 13. 3cm 9 14. (5 分)已知 z=2x+y,x,y 满足且 z 的最大值是最小值的 4 倍, Il Q亘 的值是 _ .a 俯视图 道题不能完成;考生乙每题正确完成的概率都是 2 ,且每题正确完成与否互不影 15. (5 分)给出如下四个结论: 若“且 q”为假命题,则 p、q 均为假命题; 命题 若 a b,则 2a2b - T 的否命题为 若 a b,则 2aa+2),则 a=3; 过点 A (1, 4),且横纵截距的绝对值相等的直线共有 2

6、 条. 其中正确结论的序号是 _ . 三、解答题:本大题共共 6 小题,共 75 分,解答应写出必要的文字说明、证明 过程或演算步骤 16(12分)已知函数f nxcosx-co /計口(口 R)的图象过点 M (寻,0). (1) 求 m 的值; (2) 在厶 ABC 中,角 A, B, C 的对边分别是 a, b, c,若 ccosB+bcosC=2acosB 求f (A)的取值范围. 17. (12 分)已知函数 f (x) =ex+tx (e 为自然对数的底数). (I)当 t= - e 时,求函数 f (x)的单调区间; (n )若对于任意 x(0, 2,不等式 f (x)0 恒成立

7、,求实数 t 的取值范围. 18. (12 分)如图,已知多面体 ABCDE 中,AB 丄平面 ACD,。臣平面 ACD, AC=AD=CD=DE=2AB=1, F 为 CD 的中点. (I )求证:AF 丄平面 CDE (n)求面 ACD 和面 BCE 所成锐二面角的大小. 19. (12 分)某高校设计了一个实验学科的实验考查方案:考生从 6 道备选题中 一次性随机抽取 3 题,按照题目要求独立完成全部实验操作. 规定:至少正确完 成其中 2题的便可提交通过.已知 6 道备选题中考生甲有 4 道题能正确完成,2 响. (I)分别写出甲、乙两考生正确完成题数的概率分布列,并计算数学期望; (

8、n)试从两位考生正确完成题数的数学期望及至少正确完成 2 题的概率分析比 较两位考生的实验操作能力. 20. (13 分)已知 F( 1, 0), P 是平面上一动点,P 到直线 I: x=- 1 上的射影为 点N,且满足仔 S 兮而)丽二0 (I )求点 P 的轨迹 C 的方程; (n)过点M (1, 2)作曲线 C 的两条弦 MA, MB,设 MA, MB 所在直线的斜 率分别为k1, k2,当 k1, k2变化且满足 k1+k2=- 1 时,证明直线 AB 恒过定点,并 求出该定点坐标. 21. (14 分)已知数列an满足:八 . !:.(其中常数 入 0, n N*). (I )求数

9、列an的通项公式; (n)求证:当入=4 寸,数列an中的任何三项都不可能成等比数列; (川)设 Sn为数列an的前 n 项和.求证:若任意 n N*, (1-为 Sn+Xn 3. 2018 年云南省玉溪市高考数学模拟试卷(11) 参考答案与试题解析 、选择题:本大题共 10 小题,每小题 5 分,共 50 分在每小题给出的四个 选项中,只有一项是符合题目要求的. (5分)若复数瞪(乳 R,i 为虚数单位)是纯虚数,则实数a的值为( A. 6 B. 6 C. 5 D. 4 解得 a=6. 故选 A. y = f ( X) -1口 I 为奇函数, X .y=f (x)的图象关于原点成中心对称,可

10、排除 B; 又 x0 时,f (x) ,厂(x)=巴豪, * F .x e 时,f( x)v 0,f (乂)在(e,+)上单调递减, 0vxve 时,f (x)0, f (乂)在(0, e)上单调递增,故可排除 A,D,而 C 满足题【解a-3i (a-3i)(l-2O =a-l+2i (1+21X1-213 5 根据纯虚数的概念得出 解: i 意. 故选 C. 3. (5 分)设 m、n 是两条不同的直线,a $ 丫是三个不同的平面,给出下列 四个命题: 若 all $ all 丫,贝U Y 若a丄$ m / a,贝U m $ 若 m 丄a, m / $贝U a丄$ 若 m / n, n?

11、a,则 m / a. 其中正确命题的序号是( ) A. B. C D. 【解答】解:对于,若all $ all 丫根据面面平行的性质容易得到 $/ Y;故 正确; 对于,若a丄$ m/ a, m 与$的关系不确定;故错误; 对于,若 m 丄a , m / $可以在$找到一条直线 n 与 m 平行,所以 n 丄a ,故 a丄$故正确; 对于,若 m / n, n? a,那么 m 与a的位置关系为 m/ a或者 m? a;故错 误; 故选 A. 4. (5 分)设函数 f (x)二后 cos (2x+) +sin (2x+) (| ),且图象关于 直线 x=0 对称,则( ) A. y=f (x)

12、的最小正周期为 n且在0, 上为增函数 B. y=f (x)的最小正周期为 n且在(山斗)上为减函数 C. y=f (x)的最小正周期为,且在:-上为增函数 D. y=f (x)的最小正周期为一,且在 1 |上为减函数 【解答】 解:f (x) = -cos (2x+) +sin (2x+ ysin (2x+) / w=2,=2cos (2x+ - ), 故选 B 5. (5 分)若程序框图输出 S 的值为 126 ,则判断框中应填入的条件是( ) A. n5 B. nW6 C. n7 D. n8 【解答】解:分析程序中各变量、各语句的作用, 再根据流程图所示的顺序,可知: 该程序的作用是输出

13、满足条件 S=K22+23+2n=l26 时 S 的值 / 2+22+23+26=126 -T=n -I - = n , 2 又函数图象关于直线 x=0 对称, -Lkkn ( k Z),即 =k- (k Z), 6 & IT 又 I I V = 6 f 令 2k n 2x 2kn+n (k Z),解得:k n x0,且 a20i3 (a2oi2+a2oi3) v0, 则使数列an的前 n 项和 S0 成立的最大自然数 n 是( ) A. 4027 B. 4026 C. 4025 D. 4024 【解答】解:由题意可得数列an单调递减, 由 a2013 ( a2012+a2013)V 0 可得

14、: a2oi2O, a20i3 | a20i3| . 二 a2012+a20130 . me 02012 4 啦啦 Q X 40 24 、 贝 U 025=4025a2013 0 故使数列an的前 n 项和 S0 成立的最大自然数 n 是 4024. 故选 D. 8. (5 分)M (X0, y0)为圆 x2+y2=a2 (a 0)内异于圆心的一点,则直线 X0 x+y0y=a2 与该圆的位置关系为( ) A.相切 B.相交 C相离 D.相切或相交 【解答】解:由圆的方程得到圆心坐标为(0, 0),半径 r=a, 由 M 为圆内一点得到:右/十 y/=a=r, 所以直线与圆的位置关系为:相离.

15、 故选 C 9 . ( 5 分)已知 n 为正偶数,用数学归纳法证明 _ 二- 4 +4.时,若已假设 n=k (k2)为偶数) 时命题为真,则还需要用归纳假设再证 n=( )时等式成立. A. n=k+1 B. n=k+2 C. n=2k+2 D. n=2 (k+2) 【解答】解:由数学归纳法的证明步骤可知,假设 n=k (k 2)为偶数)时命题 为真, 则还需要用归纳假设再证 n=k+2, 不是 n=k+1,因为 n 是偶数,k+1 是奇数, 故选 B. 10 . ( 5 分)已知向量口, & ,下满足丨 a 二1,丨口- bl二丨&丨, )=o|.若对每一确定的 IT, pTf 的最大值

16、和最小值分别为 n,则对任意冃,m - n 的最小值是( ) A* B 歸 Ct D. 1 【解答】解: |疋|二 1, 令|一 一:=则 A 必在单位圆上, 又又向量满足飞|- 令二=则点 B 必在线段 0A 的中垂线上, 又 v : : b,则 2a2b - T 的否命题为 若 a b,则 2aa+2),则 a=3; 过点 A (1, 4),且横纵截距的绝对值相等的直线共有 2 条. 其中正确结论的序号是 . 【解答】解:根据复合命题真值表,“p! q”为假命题,命题 P、q 至少有一个 是假命题,.错误; 根据否命题的定义,正确; 根据正态分布, 卩=3 取得峰值, 当 a=3 时, 2

17、a- 3=3, a+2=5,: P ( M 3)工 P (5).二错误; 过点 A (1, 4),且横纵截距的绝对值相等的直线有 x+y=5;仝芒=1; y=4x 三 J 3 条直线,故错误. 故答案是. 三、解答题:本大题共共 6 小题,共 75 分,解答应写出必要的文字说明、证明 过程或演算步骤 16(12 分)已知函数 f (K) s2x+ro(niE R)的图象过点 M (齐, 0). (1) 求 m 的值; (2) 在厶 ABC 中,角 A, B, C 的对边分别是 a, b, c,若 ccosB+bcosC=2acosB 求 f (A)的取值范围. (2)v ccosBbcosC=

18、2acosB 结合正弦定理,得 sinCcosBcosCsinB=2sinAcosB B+C=n A,得 sinCcosBcosCsinB=sin(B+C) =sin ( n A) =sinA sin A=2s in AcosB 17. (12 分)已知函数 f (x) =ex+tx (e 为自然对数的底数) (I)当 t= e 时,求函数 f (x)的单调区间; (n )若对于任意 x(0 , 2,不等式 f (x)0 恒成立,求实数 t 的取值范围. 【解答】 解:(I)当 t= e 时,f (x) =ex ex , f (x) =ex e. 由 f (x) =ex e0,解得 x 1 ;

19、 f (x) =ex ev0,解得 xv 1. 函数 f (x)的单调递增区间是(1, +x);单调递减区间是(-x , 1). 【解答】 解:(1): sinxcosxisin2x, coExg (1 +cos2x) sin2x二(1+cos2x) +m 2 1 2 2 f( (K) )二爸方 inK DUSK 一匚 os2 =; 2 函数 y=fx)图象过点 M ( sin2x-cos2x-丄+m=sin (2x ) 2 2 6 +m sin( 2?厂 7T 12 )-丄+m=0,解之得 ,0), 由( 1),得 f (x) =sin (2x ), 所以 f (A) =sin (2A n

20、7 7K ),其中 A(0 , TV I sin (2A ) sin ( )=4 , sin TV = 因此 f ,1 / ABC 中,sinA 0, ,得 2 (n)依题意:对于任意 x(0 , 2,不等式 f (x) 0 恒成立, 令心十严 当 Ovxv 1 时,g (x) 0;当 1 vxv 2 时,g (x)v 0. 函数 g (x)在(0, 1)上单调递增;在(1, 2) 上单调递减. 所以函数 g (x)在 x=1 处取得极大值 g (1) =- e,即为在 x( 0, 2上的最大 值. 实数 t 的取值范围是(-e, +x). 所以对于任意 x(0, 2,不等式 f (x)0 恒

21、成立的实数 t 的取值范围是(- 18. (12 分)如图,已知多面体 ABCDE 中,AB 丄平面 ACD,。臣平面 ACD, AC=AD=CD=DE=2AB=1, F 为 CD 的中点. (I )求证:AF 丄平面 CDE (U)求面 ACD 和面 BCE 所成锐二面角的大小. D 【解答】(I )证明:DE 丄平面 ACD, AF?平面 ACD,二 DE 丄 AF. 又 AC=AD F 为 CD 的中点,二 AF 丄 CD. 又 CDA DE=D, AF 丄平面 CDE (U )由(I )可知:平面 ACD 丄平面 CDE 取 CE 的中点 Q,连接 FQ,: FQ/ DE, FQ 丄平

22、面 ACD.于是可得 FD, FQ, FA 两两垂直,以 F 为坐标原点,建立如图 所示的空间直角坐标系. 则 F (0, 0, 0), C (- 1, 0, 0), A 山肯)|, B 陌汇 V3), E (1, 2, 0). 即 ex+tx 0 恒成立,即 t V:,.:,尸:, 令 x=1,则 y=- 1, z=o,.:、丄.一, FQ 丄平面 ACD,于是可取平面 ACD 的法向量为,-. -卜= -1 . - |n| |H| V2 平面 ACD 和平面 BCE 所成锐二面角为 45 19. (12 分)某高校设计了一个实验学科的实验考查方案:考生从 6 道备选题中 次性随机抽取 3

23、题,按照题目要求独立完成全部实验操作. 规定:至少正确完 成其中 2 题的便可提交通过.已知 6 道备选题中考生甲有 4 道题能正确完成,2 响. (I )分别写出甲、乙两考生正确完成题数的概率分布列,并计算数学期望; (n)试从两位考生正确完成题数的数学期望及至少正确完成 2 题的概率分析比 较两位考生的实验操作能力. 【解答】解:(I )设考生甲、乙正确完成实验操作的题数分别为 5 n则E =、 2、3, n =0 1、2、3. 所以考生甲正确完成实验操作的题数的概率分布列为: EE 壬 X* 件 +3 Xy=2.设平面 BCE 的法向量 L(春 y, “,则上 11-65=0 ,化为 L

24、FLFCE=0 2x+2y=0 道题不能完成;考生乙每题正确完成的概率都是 ,且每题正确完成与否互不影 2 2=1 飞飞 ,P ( =)= =-,P 仁 C3 1 5 B 3 5 rr B(3, 2),所以考生甲正确完成实验操作的题数的概率分布列为: 3 * 1 5 L _ : (k=0, 1, 2, 3), Er=3X P (学 2) P ( n 2), 从做对题的数学期望上甲乙两人水平相当; 从至少完成两题的概率上看,甲通过 的可能性比较大,因此可以判断甲的实验操作能力强. 20. (13 分)已知 F( 1, 0), P 是平面上一动点,P 到直线 I: x=- 1 上的射影为 点 N

25、,且满足 tra+yMF )-NF=Cl (I、求点 P 的轨迹 C 的方程; (U)过点 M (1, 2)作曲线 C 的两条弦 MA, MB,设 MA, MB 所在直线的斜 率分别为 k1, k2,当 k1, k2变化且满足 k1 +k2= - 1 时,证明直线 AB 恒过定点,并 求出该定点坐标. 【解答】解:(I )设曲线 C 上任意一点 P (x, y),又 F (1, 0), N (- 1, y). 从而Q),丽二 -y), P (n =k =二二 (n)v P(学 2)二二+ ;4=5 ,PF2)- 则麺 +yNF= (-1 T, 0) (2, y=y1+y2 ify2 整理得 kik2 (x+y+1) +6+y=0. 则严汕“二产,故直线 AB 经过定点(5,- 6). Q o ST; 3. n 21. (14 分)已知数列an满足:一 .

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论