




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、高等数学竞赛试题3答案一、选择题1.设,且,则( C )(A) 存在且等于零;(B) 存在但不一定等于零;(C) 不一定存在;(D) 一定不存在.2.设是连续函数,的原函数,则( A )(A) 当为奇函数时,必为偶函数;(B) 当为偶函数时,必为奇函数;(C) 当为周期函数时,必为周期函数;(D) 当为单调增函数时,必为单调增函数.3.设,在内恒有,记,则有( B )(A) ;(B) ;(C) ;(D) 不确定.4.设有连续导数,且,当时,是同阶无穷小,则( B )(A) 4;(B) 3;(C) 2;(D) 1.5.设,则在点( D )(A) 不连续;(B) 连续但偏导数不存在;(C) 可微;
2、(D) 连续且偏导数存在但不可微.6.设,则以向量、为边的平行四边形的对角线的长度为( A )(A) ;(B) 3, 11;(C) ;(D) .7.设是包含原点在内的两条同向闭曲线,的内部,若已知(k为常数),则有( D )(A) 等于k; (B) 等于; (C) 大于k;(D) 不一定等于k,与L2的形状有关.8.设在处收敛,则在处( D )二、设,试确定、的值,使都存在.解:当时,故;当时,。三、设的一个原函数,且,求.解:,由知,四、设,S为的边界曲面外侧,计算解:(下侧),(上侧), 五、已知,.求证:(1)数列收敛;(2)的极限值a是方程的唯一正根.解一:(1),; 又收敛,收敛,收
3、敛,又因,故收敛。(2)令,且,即a是的根,令,故根唯一。解二:由已知,由此可见, (用归纳法证明偶数项单调减少,奇数项单调增加)。设,。, 由知、收敛,令,;由,知,。对两边取极限得, 对两边取极限得, 由得,解得由知收敛,且为方程的根(再证唯一性)。六、设在单位圆上有连续的偏导数,且在边界上取值为零,求证: , 其中D为圆环域:解一:令,。由已知当时,故解二:令,令为(逆时针),为(顺时针) ,。七、有一圆锥形的塔,底半径为R,高为,现沿塔身建一登上塔顶的楼梯,要求楼梯曲线在每一点的切线与过该点垂直于平面的直线的夹角为,楼梯入口在点, 试求楼梯曲线的方程.解:设曲线上任一点为,曲线参数方程为(*),在点的切向量为,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025至2030年中国户内普通标识行业投资前景及策略咨询报告
- 酒店维修工管理制度
- 酒店采购部管理制度
- 采空区应急管理制度
- 2025至2030年中国工程试剂行业投资前景及策略咨询报告
- 钱大妈员工管理制度
- 铝单板喷涂管理制度
- 银行卫生区管理制度
- 2025至2030年中国口腔治疗巾行业投资前景及策略咨询报告
- 2025至2030年中国去黄龙虾尾肉行业投资前景及策略咨询报告
- 课后服务家长满意度调查表
- DB43-T 1577-2024基于镉含量的稻谷分级收储技术规程
- (完整版)西泠印社出版社三年级下册《书法练习指导》完整教案
- 信号完整性分析之1314
- DB11T 1855-2021 固定资产投资项目节能审查验收技术规范
- 第1节 功、热和内能的改变 教学课件
- 古诗文联读 专项训练-2025年中考语文复习突破(江苏专用)(解析版)
- 课件:《中华民族共同体概论》第十五讲:新时代与中华民族共同体建设
- 2024至2030年中国锅炉给水泵行业深度调研及发展预测报告
- 计算机组成原理习题答案解析(蒋本珊)
- 中医穴位埋线
评论
0/150
提交评论