求解数学递推数列的通项公式的九种方法7_第1页
求解数学递推数列的通项公式的九种方法7_第2页
求解数学递推数列的通项公式的九种方法7_第3页
求解数学递推数列的通项公式的九种方法7_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、求递推数列的通项公式的九种方法利用递推数列求通项公式,在理论上和实践中均有较高的价值.自从二十世纪八十年代以来,这一直是全国高考和高中数学联赛的热点之一.一、作差求和法例1 在数列中,,,求通项公式.解:原递推式可化为:则 ,逐项相加得:.故.二、作商求和法例2 设数列是首项为1的正项数列,且(n=1,2,3),则它的通项公式是=(2000年高考15题)解:原递推式可化为: =0 0, 则 , 逐项相乘得:,即=.三、换元法例3 已知数列,其中,且当n3时,求通项公式(1986年高考文科第八题改编).解:设,原递推式可化为: 是一个等比数列,公比为.故.故.由逐差法可得:. 例4已知数列,其中

2、,且当n3时,求通项公式。解 由得:,令,则上式为,因此是一个等差数列,公差为1.故.。由于又所以,即 四、积差相消法 例5(1993年全国数学联赛题一试第五题)设正数列,满足= 且,求的通项公式.解 将递推式两边同除以整理得:设=,则=1,故有 ()由+ +()得=,即=.逐项相乘得:=,考虑到,故 . 五、取倒数法例6 已知数列中,其中,且当n2时,求通项公式。解 将两边取倒数得:,这说明是一个等差数列,首项是,公差为2,所以,即.六、取对数法例7 若数列中,=3且(n是正整数),则它的通项公式是=(2002年上海高考题).解 由题意知0,将两边取对数得,即,所以数列是以=为首项,公比为2

3、的等比数列, ,即.七、平方(开方)法例8 若数列中,=2且(n),求它的通项公式是.解 将两边平方整理得。数列是以=4为首项,3为公差的等差数列。因为0,所以。八、待定系数法待定系数法解题的关键是从策略上规范一个递推式可变成为何种等比数列,可以少走弯路.其变换的基本形式如下:1、(A、B为常数)型,可化为=A()的形式.例9 若数列中,=1,是数列的前项之和,且(n),求数列的通项公式是.解 递推式可变形为 (1)设(1)式可化为 (2)比较(1)式与(2)式的系数可得,则有。故数列是以为首项,3为公比的等比数列。=。所以。当n,。数列的通项公式是 。2、(A、B、C为常数,下同)型,可化为

4、=)的形式.例10 在数列中,求通项公式。解:原递推式可化为: 比较系数得=-4,式即是:.则数列是一个等比数列,其首项,公比是2. 即.3、型,可化为的形式。例11 在数列中,当, 求通项公式.解:式可化为:比较系数得=-3或=-2,不妨取=-2.式可化为:则是一个等比数列,首项=2-2(-1)=4,公比为3.利用上题结果有:.4、型,可化为的形式。例12 在数列中,=6 求通项公式.解 式可化为: 比较系数可得:=-6, 式为是一个等比数列,首项,公比为.即 故.九、猜想法 运用猜想法解题的一般步骤是:首先利用所给的递推式求出,然后猜想出满足递推式的一个通项公式,最后用数学归纳法证明猜想是

5、正确的。例13 在各项均为正数的数列中,为数列的前n项和,=+ ,求其通项公式。 高三数学复习:求数列通项公式的常用方法 在高考中数列部分的考查既是重点又是难点,不论是选择题或填空题中对基础知识的检验,还是压轴题中与其他章节知识的综合,抓住数列的通项公式通常是解题的关键。 求数列通项公式常用以下几种方法: 一、题目已知或通过简单推理判断出是等比数列或等差数列,直接用其通项公式。 例:在数列an中,若a1=1,an+1=an+2(n1),求该数列的通项公式an。 解:由an+1=an+2(n1)及已知可推出数列an为a1=1,d=2的等差数列。所以an=2n-1。此类题主要是用等比、等差数列的定

6、义判断,是较简单的基础小题。 二、已知数列的前n项和,用公式 S1 (n=1) Sn-Sn-1 (n2) 例:已知数列an的前n项和Sn=n2-9n,第k项满足5 (A) 9 (B) 8 (C) 7 (D) 6 解:an=Sn-Sn-1=2n-10,52k-108 k=8 选 (B) 此类题在解时要注意考虑n=1的情况。 三、已知an与Sn的关系时,通常用转化的方法,先求出Sn与n的关系,再由上面的(二)方法求通项公式。 例:已知数列an的前n项和Sn满足an=SnSn-1(n2),且a1=-,求数列an的通项公式。 解:an=SnSn-1(n2),而an=Sn-Sn-1,SnSn-1=Sn-

7、Sn-1,两边同除以SnSn-1,得-=-1(n2),而-=-=-,- 是以-为首项,-1为公差的等差数列,-= -,Sn= -, 再用(二)的方法:当n2时,an=Sn-Sn-1=-,当n=1时不适合此式,所以, - (n=1) - (n2) 四、用累加、累积的方法求通项公式 对于题中给出an与an+1、an-1的递推式子,常用累加、累积的方法求通项公式。 例:设数列an是首项为1的正项数列,且满足(n+1)an+12-nan2+an+1an=0,求数列an的通项公式 解:(n+1)an+12-nan2+an+1an=0,可分解为(n+1)an+1-nan(an+1+an)=0 又an是首项

8、为1的正项数列,an+1+an 0,-=-,由此得出:-=-,-=-,-=-,-=-,这n-1个式子,将其相乘得: -=-, 又a1=1,an=-(n2),n=1也成立,an=-(nN*) 五、用构造数列方法求通项公式 题目中若给出的是递推关系式,而用累加、累积、迭代等又不易求通项公式时,可以考虑通过变形,构造出含有 an(或Sn)的式子,使其成为等比或等差数列,从而求出an(或Sn)与n的关系,这是近一、二年来的高考热点,因此既是重点也是难点。 例:已知数列an中,a12,an+1=(-1)(an+2),n=1,2,3, (1)求an通项公式 (2)略 解:由an+1=(-1)(an+2)得到an+1- (-1)(an-) an-是首项为a1-,公比为-1的等比数列。 由a12得an-=(-1)n-1(2-) ,于是an=(-1)n-1(2-)+- 又例:在数列an中,a1=2,an+1=4an-3n+1(nN*),证明数列an-n是等比数列。 证明:本题即证an+1-(n+1)=q(an-n) (q为非0常数) 由an+1=4an-3n+1,可变形为an+1-(n+1)=4(an-n),又a1-1=1, 所以数列an-n是首项为1,公比为4的等比数列。 若将此问改为求an的通项公式,则仍可以通过求出an-n的通项公式,再转化到an的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论