某单位拟从三名干部中提拔一人担任领导工作_第1页
某单位拟从三名干部中提拔一人担任领导工作_第2页
某单位拟从三名干部中提拔一人担任领导工作_第3页
某单位拟从三名干部中提拔一人担任领导工作_第4页
某单位拟从三名干部中提拔一人担任领导工作_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、 数学建模选修课作业(论文)作者: 陈 帅 8000111078东软实验111班 涂 琳8000111106软工113班 干部选拔问题数学建模论文摘要 本文采用数学建模目标决策分析中应用广泛的层次分析法,探寻求解此类数学问题的快速、有效、直接的方法。针对从三名干部中提拔一人担任领导工作的问题我们采用层次分析法(AHP),这是一种定性和定量相结合的、系统化、层次化的分析方法。首先对问题构造层次结构模型,并运用矩阵和组合权向量进行一系列求解和组合一致性检验得出最终结果。【关键词】:层次分析,选拔干部,矩阵1. 问题的提出人们在日常生活中常常会碰到许多决策问题:买一件衣服,要考虑颜色、图案、风格、价

2、位;请朋友吃饭,要筹划是办家宴或去饭店,吃中餐、西餐或是自助餐等等。如果以为这些日常小事不必作为决策问题认真对待的话,那么当你面临报考学校、挑选专业或者选择工作岗位等重大问题时,就要慎重考虑、反复比较,尽可能地作出满意的决策了。针对干部选拔问题我们要考虑和衡量的因素也很多。2.问题的分析人们在处理上面这些决策的时候,要考虑的因素有多有少,有大有小,但一个共同点就是它们通常都涉及到经济、社会、人文等方面的因素。在作比较、判断、评价、决策时,这些因素的重要性、影响力或者优先程度往往难以量化,人们的主观选择也起着相当主要的作用,这就给用一般的数学方法解决问题带来实质上的困难。然而T. L. Saat

3、y等人在七十年代提出了一种能有效地处理这样一类问题的使用方法,称为层次分析法(AHP)。这是一种定性和定量相结合的、系统化、层次化的分析方法。我们采用层次分析法解决某单位拟从三名干部中提拔一人担任领导工作的问题。干部的优劣(由上级人事部门提出)可以用六个属性来衡量:健康状况、业务知识、写作水平、口才、政策水平、工作作风,分别用p1 、 p2 、 p3 、 p4 、 p5 、 p6 来表示。2. 模型假设层次分析法的基本思路与人对一个复杂的决策问题的思维判断过程大体上是一样的。首先,考虑这一职位那种能力最重要,其次,就每一个准则将甲乙丙作对比,最后,你将这两个层次的比较判断进行综合,在甲,乙,丙

4、中作出选择。根据这个思路,将有关的各个因素按照不同属性自上而下地分解成若干个层次。同一层的诸因素从属于上一层的因素或对上一层的因素有影响,同时又支配下一层的因素或受到下一层因素的作用。一般分为目标层、准则层和方案层。3. 模型的建立建立层次结构模型如下:层次分析图:提拔一人担任领导目标层 W1 W2 W3 W4 W5 W6p2业务水平p3写作水平p4口才p5政策水平p6工作作风p1健康状况ANG准则层丙乙甲方案层通过相互比较确定各准则对于目标的权重。通常的做法是,一是不把所有因素放在一起比较,而是两两相互对比,对比时采用相对尺度,以尽可能减少性质不同的诸因素相互比较的困难,提高精确度。4. 模

5、型的求解构造成对比较阵:假设要比较某一层n个因素对上一层一个因素的影响。如本题中中健康状况等六个准则在提拔干部这个目标中的重要性。每次取两个因素和,用表示和对的影响之比,全部比较结果可用成对比较矩阵 (1)表示。由于,称为正互反矩阵。显然,。约定比较尺度1 与同等重要 3 比重要一点 5 与重要 7 与重要得多 9 与极为重要2、4、6、8是介于1、3、5、7、9之间的重要性本题中,成对比较阵如下, 1 1 1 4 1 1/2 1 1 2 4 1 1/2A= 1 1/2 1 5 3 1/2 1/4 1/4 1/5 1 1/3 1/3 1 1 1/3 3 1 1 2 2 2 3 1 1成对比较阵

6、确定了与的重要性关系,那么如何通过成对比较阵来确定诸因素对上层因素的权重呢?(对的重要性所占的比重)求权向量(和法):将矩阵A的每一列元素作归一化处理,其元素的一般项为: 1 1 1 4 1 1/2 1 1 2 4 1 1/2A= 1 1/2 1 5 3 1/2 1/4 1/4 1/5 1 1/3 1/3 1 1 1/3 3 1 1 2 2 2 3 1 1将每一列经归一化处理后的判断矩阵按行相加为: 0.16 0.17 0.15 0.20 0.14 0.13 0.95、 0.16 0.17 0.30 0.20 0.14 0.13 按 1.10 0.16 0.09 0.15 0.25 0.42

7、0.13 行 1.20 0.04 0.04 0.03 0.05 0.05 0.09 求 0.30 0.16 0.17 0.05 0.15 0.14 0.14 和 0.93 0.32 0.34 0.30 0.15 0.14 0.26 1.51 0.95 0.16 1.10 0.18 1.20 归一化 0.20 0.30 0.05 0.93 0.16 1.51 0.25表示诸因素对上层因素的权重,称为权向量。求三人所得总分:甲的总分=S Wi* Wi1 = 0.16* 0.14+ 0.18* 0.10 + 0.20* 0.14 + 0.05* 0.28 + 0.16* 0.47 + 0.25* 0

8、.80 = 0.3576乙的总分 = S Wi* Wi2 = 0.16* 0.62+ 0.18* 0.32 + 0.20* 0.62 + 0.05* 0.65 + 0.16* 0.47 + 0.25* 0.15 = 0.4372丙的总分 = S Wi* Wi3 = 0.16* 0.24+ 0.18* 0.58 + 0.20* 0.24 + 0.05* 0.07 + 0.16* 0.07 + 0.25* 0.05 = 0. 2182因为乙甲丙的总分,所以应该提拔乙到领导岗位上。5. 模型结果的检验和分析一致性检验:定义:对于一个正互反阵满足则称为一致性矩阵,简称一致阵。否则,称不是一致阵。注:(

9、1)一、二阶方阵一定是一致阵。(2)阶正互反矩阵的最大特征根。(3)阶正互反矩阵是一致阵的充要条件为的最大特征根。在实际构造成对比较阵的过程中,全部一致的要求太苛刻了,所以成对比较阵通常是不一致的,但是我们有一个不一致的容许范围,也就是说,若在这个容许范围内也是可以的。因此,需要对进行一致性检验。把权向量作为的特征向量,求最大特征根。 (2)定义一致性指标 (3)为了找出衡量的一致性指标的标准,Saaty又引入所谓随机一致性指标,计算的过程是对于固定的,随机构造正互反矩阵,用它们的的平均值作为随机一致性指标,得到下面结果:1234567891011000.580.901.121.241.321

10、.411.451.491.51定义 (4)为一致性比率。如果,则称的不一致程度在容许范围之内。若否,对加以调整。对用(2)、(3)、(4)式进行检验,称为一致性检验。1 1 1 4 1 1/2 0.16 1.025 1 1 2 4 1 1/2 0.18 1.225 1 1/2 1 5 3 1/2 0.20 1.305 1/4 1/4 1/5 1 1/3 1/3 0. 05 = 0.309 1 1 1/3 3 1 1 0.16 1.066 2 2 2 3 1 1 0.25 1.640由查得,于是,通过一致性检验,可用作为权向量。组合权向量:在此决策问题中,我们已经得到了第二层(准则层)对第一层(

11、目标层)的权向量。用同样的方法构造第三层(方案层)对第二层每一个准则的成对比较阵。用B1,B2,B3,B4,B5 ,B6分别表示甲,乙,丙对准则p1,p2,p3,p3,p4,p5,p6的优越性。对于各准则:健康状况p1 1 1/4 1/2 B1= 4 1 3 2 1/3 1同样,业务水平p2 1 1/4 1/5B2= 4 1 1/2 5 2 1写作水平p3 1 3 1/5 B3= 1/3 1 1 5 1 1口才p4 1 1/3 5 B4= 3 1 7 1/5 1/7 1政策水平p5 1 1 7B5= 1 1 7 1/7 1/7 1工作作风p6 1 7 9B6 = 1/7 1 5 1/9 1/5

12、 1求出方案层对目标层的最大特征向量。=(0.14,0.62,0.24)=(0.10,0.32,0.58)=(0.14,0.62,0.24)=(0.28,0.65,0.07)=(0.47,0.47,0.06)=(0.80,0.15,0.05)对于每一个成对比较阵,都可以计算出权向量,分别记为,最大特征根和,以为例:经计算,对于本题,每个都通过了一致性检验。 一般地,若第一层只有一个因素,第二、三层分别由个因素,第二层对第一层的权向量为,第三层对第二层的权向量为,以为列向量构成矩阵,则第三层对第一层的组合权向量。若共有层,则第层对第一层的组合权向量满足其中是以第层对第层的权向量为列向量组成的矩阵。于是,最下层(第层)对最上层的组合权向量组合一致性检验:在层次分析的整个计算过程中,除了对每个成对比较阵进行一致性检验,以判断每个权向量是否可以应用外,还要进行所谓组合一致性检验,以确定组合权向量是否可以作为最终的决策依据。组合一致性检验可逐层进行,若第层的一致性指标为(是层因素的数目),随机一致性指标为,定义其中表示第层的权向量。定义第层对第一层的组合一致性比率为若,则通过了组合一致性检验。结果分析:在本题中, 故通过组

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论