




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、杨辉三角(1)内容分析 本课的主要内容是总结杨辉三角的三个基本性质及研究发现杨辉三角横行的若干规律。杨辉三角的三个基本性质主要是二项展开式的二项式系数即组合数的性质,它是研究杨辉三角其他规律的基础。杨辉三角横行的数字规律主要包括横行各数之间的大小关系。组合关系以及不同横行数字之间的联系。研究性课题,主要是针对某些数学问题的深入探讨,或者从数学角度对某些日常生活中和其他学科中出现的问题进行研究。目的在于培养学生的创新精神和创造能力。它要求教师给学生提供研究的问题及背景,让学生自主探究知识的发生发展过。从问题的提出、探索的过程及猜想的建立均主要由学生自主完成,教师不可代替,但作为组织者,
2、可提供必要指导。教师首先简介杨辉三角的相关历史,激发学生的民族自豪感和创造欲望,然后引导学生总结有关杨辉三角的基本知识(研究的基础)及介绍发现数字规律的主要方法(研究的策略),并类比数列的通项及求和,让学生对n阶杨辉三角进行初步的研究尝试活动,让学生充分展开思维进入研究状态。以下主要分小组合作研究杨辉三角的横行数字规律,重点发现规律,不必在课堂上证明。 1用电脑展示贾宪三角图、朱泄杰的古法七乘方图、帕斯卡三角图(附后),同时播放用古代民族乐器演奏的音乐。教师介绍杨辉三角的简史:北宋人贾宪约1050年首先使用“贾宪三角”进行高次开方运算,南宋数学家杨辉在详解九章算法(1961年)记载并
3、保存了“贾宪三角”,故称杨辉三角。元朝数学家朱世杰在四元玉鉴(1303年)扩充了“贾宪三角”成“古法七乘方图”。在欧洲直到1623年以后,法国数学家帕斯卡在13岁时发现了“帕斯卡三角”。 2用电脑展示15阶杨辉三角或事先印好15阶杨辉三角分发给学生。对照杨辉三角,回顾高二下学期学过的杨辉三角的构造及基本性质,并由学生叙述。1°与二项式定理的关系:杨辉三角的第n行就是二项式展开式的系数列。2°对称性:杨辉三角中的数字左、右对称,对称轴是杨辉三角形底边上的“高”,即。3°结构特征:杨辉三角除斜边上1以外的各数,都等于它“肩上”的两数之和,即。(二)分组研究杨
4、辉三角横行规律(将全班学生按前后排四或五人一组分成若干研究小组)1介绍数学发现的方法:杨辉三角中蕴涵了许多优美的规律。古今中外,许多数学家如贾宪、杨辉、朱世杰、帕斯卡、华罗庚等都曾深入研究过,并将研究结果应用于其他工作。他们研究的方法可以归纳为: 15阶杨辉三角2学生尝试探索活动。(1)n阶杨辉三角中共有多少个数?(2)n阶杨辉三角的通项公式是什么?即n阶杨辉三角中的第k行第r个数是什么?(3)n阶杨辉三角的第k行各数的和是多少?所有数的和是多少?学生独立思考后,由学生发言,得出结论。n阶杨辉三角中共有个数,第n+2行第3个数;通项公式为,。3按研究横行数字规律的方向开展研究工作,
5、工作的重点是发现规律。教师巡视指导,必要时可参与某小组的讨论活动。最后由小组代表陈述研究结果及建立猜想的大致思路。(1)杨辉三角的第2k行中第k个数最大;即;第2k1行中第是k个数与第kl个数相等且最大,即;2k阶杨辉三角中最大数为,2k1阶杨辉三角中的最大数为。 (2)杨辉三角中第行的所有数都是奇数(kN*),即为奇数(m=0,1,);第行的所有数(除两端的1以外)都是偶数(kN*),即为偶数(r=1,2,);其他行的所有数中,一定既有偶数又有除1以外的奇数。(3)第p(p为素数)行除去两端的数字1以外的所有数都能被p整除,其逆命题也成立。即对任意r1,2,n-1,都有是素数。(
6、4)将第n行的所有数按从左到右的顺序合并在一起得到的多位数等于。(5)第2n行的第n个数是第2n-1行的第n-1个数的2倍,即。如图,每一幅小图中的圆的个数及圆上的点、线段、三角形、四边形、五边形、六边形的数目有一定的变化规律,研究杨辉三角,你能找出两者间的关系吗? 附(1):证明:当时,是奇数。证明:对任何一个正整数m,都存在唯一的自然数与正奇数,使。设,。当时,上式的分子、分母都是奇数,且分式值是正整数,是奇数。附(2): 杨辉三角(2)内容分析1从研究平行于杨辉三角形“两腰”的斜边上的数字规律的过程中,我们可以发现朱世杰恒等式:。这个规律其实是杨辉三角第三
7、条基本性质的推广形式。应用朱世杰恒等式,可以求出的和式值。2研究经过两数,或的斜边上的数字规律,可以得到著名的斐波那契数列。由斐波那契数列的通项公式,可得组合数的性质:,。3将阶杨辉三角形中去掉所有的偶数,剩下的图形类似于分形几何中的谢尔宾斯基三角形(如图),这种三角形是研究自然界大量存在的不规则现象(海岸线性状、大气运动、海洋湍流、野生生物群体涨落,乃至股市升降等)的崭新教学工具。 4教科书中的正六棱柱形木板滚球实验说明杨辉三角与概率统计之间存在联系。讲授时,老师应制作一个教具,并用16个小球。做实验若干次,然后引导学生挖掘实验结果与杨辉三角之间的关系,并用排列组合知识
8、与概率知识加以解释。1用电脑展示8阶杨辉三角图,以备用上节课主要是研究杨辉三角横行的数字规律,这节课首先来研究斜行的数字规律(如图)。 2学生分小组研究,得出的结果可能是:(1)n阶杨辉三角形的第k+1条斜边上的数(从左到右,从上到下)组成的数列是:。(2)上述数列的和为:。3引导学生证明上述等式,并介绍有关朱世杰研究上述组合数恒等式的情况(1)证明过程: (2)朱世杰问题(如象招数问题):以立方招兵,初招方面三尺,次招方面转多一尺,今招十五日,问招兵几何?用数列语言来说就是:第k日招兵,共招n日,一共招兵多少?问题可转化为求和: 。4引导学生观察8阶杨辉三角表。研究图中
9、标出的斜行各数之间的关系(1)将各斜边的数字相加后按从上而下的顺序列出:1,1,2,3,5,8,13,21,34。(2)研究上述数列的规律后,可以猜测:无穷阶杨辉三角类似的数列为:(3)引导学生将表示成组合数的和,并证明。,根据杨辉三角的基本性质3可以推出。(4)指出上述数列是斐波那契数列,该数列有广泛应用。5观察下图15阶杨辉三角中,各小正三角形内的数有什么特点?并推广到阶杨辉三角中 (1)(自上而下)第k个正三角形内的数都是偶数,即都是偶数(kN*)。(2)第k个正三角形两腰外的第一条斜边上的数都是奇数,即都是奇数(kN*)。这条性质和上节课推出的性质“第行上的所有数中既有偶数也
10、有非1的奇数”相吻合。(3)阶杨辉三角中,偶数与奇数,哪个更多?阶杨辉三角中,共有个奇数,共有个偶数(kN*),试比较与的大小(留课外思考)。6演示实验教师或学生将16个均匀小球逐个平稳地放入如图的教具内。统计最后各个矩形框内的小球个数。连续做三次实验,分析统计结果;并将结果推广到有n+1层的教具,个小球的情形,并给出合理解析。(1)设小球从第一层落入第n层下面的第k个矩形框的通道条数为F(n,k),则根据教具的对称性及小球的均匀性,可建立如下递推模式:F(1,1)=1,F(n,k)=F(n,n-k+1),F(n+1,k)=F(n,k-1)+F(n,k),k=1,2,n+1,规定F(n,0)=F(n,n+1)=0(nN*)。 类比杨辉三角形的基本性质:可猜测:。(可以用数列方法证明结论为真,留课后思考)故在理想状态下,个小球从第一层落到第n层,从左到右各矩
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 转让互换协议书范本
- 运输车辆租凭合同协议
- 辽宁篮球青训合同协议
- 达人主播合作合同协议
- 送餐员兼职合同协议
- 邹城二手房合同协议
- 家属参与护理的技巧试题及答案
- 安全生产管理的重要性与实际案例分享试题及答案
- 车位转户合同协议版
- 中级会计考试高频考点总结试题及答案
- 2025年北京市朝阳区高三二模-政治+答案
- 温州市普通高中2025届高三第三次适应性考试物理试题及答案
- 《光纤激光切割技术》课件
- 10.信息光子技术发展与应用研究报告(2024年)
- 2025年下半年商务部外贸发展事务局第二次招聘8人易考易错模拟试题(共500题)试卷后附参考答案
- 2024年山西杏花村汾酒集团有限责任公司招聘笔试真题
- 《行政法与行政诉讼法》课件各章节内容-第一章 行政法概述
- 浙江2025年浙江省地质院本级及所属部分事业单位招聘笔试历年参考题库附带答案详解
- 2025年广东广州中物储国际货运代理有限公司招聘笔试参考题库含答案解析
- MOOC 学术英语写作-东南大学 中国大学慕课答案
- 愚公移山英文 -中国故事英文版课件
评论
0/150
提交评论