




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、序列二次规划法求解一般线性优化问题: 基本思想:在每次迭代中通过求解一个二次规划子问题来确定一个下降方向,通过减少价值函数来获取当前迭代点的移动步长,重复这些步骤直到得到原问题的解。1.1等式约束优化问题的Lagrange-Newton法考虑等式约束优化问题 其中都为二阶连续可微的实函数.记.则的Lagrange函数为: (1.3)其中为拉格朗日乘子向量。约束函数的Jacobi矩阵为:.对(1.3)求导数,可以得到下列方程组: (1.4)现在考虑用牛顿法求解非线性方程(1.4).的Jacobi矩阵为: (1.5)其中是拉格朗日函数关于的Hessen矩阵.也称为K-T矩阵。对于给定的点,牛顿法的
2、迭代格式为:.其中是线性方程组 (1.6)的解。注意:只要行满秩且是正定的,那么(1.6)的系数矩阵非奇异,且方程组有唯一解。引理1:已知矩阵,则对任意满足的非零向量都有的充要条件是存在常数,使得对任意的都有.证明略。鉴于方程组(1.6)的求解数值不稳定,故考虑将它转化成一个严格凸二次规划问题.转化的条件是的解点处的最优性二阶充分条件成立,即对满足的任一向量,成立。再由引理1知:当充分小时,正定。考虑(1.6)中的用一个正定矩阵来代替,记则当时,矩阵正定。(1.6)的第一个展开式为将上式变形为:令后得:.因此,(1.6)等价于 (1.7)进一步,可以把方程(1.7)转换成如下严格凸二次规划:
3、(1.8)方程(1.7)和(1.8)具有同解的。1.2一般形式的约束优化问题将1.1节中构造二次规划子问题求解等式约束优化问题的思想推广到一般形式的约束优化问题。在给定点后,将约束函数线性化,并对拉格朗日函数进行二次多项式近似,得到下列二次规划子问题: (1.9)其中,拉格朗日函数为.于是,迭代点的校正步以及新的拉格朗日乘子估计量可以分别定义为问题的一个K-T点和相应的拉格朗日乘子向量。定理1:给定约束优化问题(1.1)的最优解 和相应的拉格朗日乘子.假定在处,下面的条件成立:(1) 有效约束的Jacobi矩阵行满秩,其中;(2) 严格互补松弛条件成立,即 (3) 二阶最优性充分条件成立,即对
4、满足的任一向量,成立.那么若充分靠近,则二次规划问题(1.9)存在一个局部极小点,使得其对应的有效约束指标集与原问题在处的有效指标集是相同的。注意:在构造二次规划子问题时,需要计算拉格朗日函数在迭代点处的Hessen矩阵,计算量过大。为了克服这个缺陷,韩世平基于牛顿-拉格朗日法提出了一种利用对称正定矩阵来代替拉格朗日矩阵的序列二次规划法。对于一般约束优化问题(1.1),在迭代点,构造下列形式的二次规划子问题:(1.10)并且用(1.10)的解作为原问题变量在第次迭代过程中的搜索方向。其中有一个好的性质是它许多罚函数(价值函数)的下降方向。例如,对于L1精确罚函数:其中为罚参数,。为了保证SQR
5、方法的全局收敛性,通常借助价值函数来确定搜索步长。用来衡量一维搜索的好坏。算法(一般约束优化问题的SQP方法)Step 0:给定初始点对称正定矩阵.计算,.选择参数容许误差令Step 1:求解子问题(1.10)得最优解.Step 2:若且,stop,得到(1.1)的一个近似KT点.Step 3:对于某种价值函数,选择罚参数,使得是该函数在处的下降方向。Step 4:Armijo搜索. 令是使下列不等式成立的最小非负整数: 令 Step 5:计算 以及最小二乘乘子 Step 6:校正矩阵为.令 其中参数定义为Step 7:令转1.注意:(step 1)利用K-T条件,问题(1.10)等价于(1.11)第三式是维互补问题,定义光滑函数 其中为光滑参数.令,其中其中表示的第行.记,那么(1.11)问题等价于 则的Jacobi矩阵为 其中,由下式确定: 而,其中由下式确定:给定参数,定义非负函数(step 3)中选择价值函数 可令,任意选择一个,定义罚参数的修正规则为 (ste
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年宁波大学附属人民医院招聘编外人员1人考前自测高频考点模拟试题带答案详解
- 公司货运代办业务员基础考核试卷及答案
- 公司印后成型工入职考核试卷及答案
- 年产5000吨高性能碳纤维及复合材料项目风险评估报告
- 大众控烟知识培训通知课件
- 公司挤出拉制模具工理念考核试卷及答案
- 大众专业知识培训心得课件
- 2025辽宁鞍山市立山区教育局面向应届毕业生校园招聘2人模拟试卷及答案详解(各地真题)
- 公司选剥混茧工工作流程认知考核试卷及答案
- 工程质量改进与提升方案
- 2025年贵州高考生物试卷真题及答案详解(精校打印版)
- 2025四川成都高新投资集团有限公司选聘中高层管理人员4人笔试参考题库附答案解析
- 湖南省九校联盟2026届高三上学期9月第一次联考物理试题(含答案)
- 水利工程水利工程施工技术规范
- 健康安全紧急培训内容课件
- 畜牧兽医职称考试题库及答案
- 安东尼奥高迪设计大师
- 混凝土施工技术难点及相应解决方案,通用
- 初中励志英语谚语
- 2023年云南曲靖市交通建设投资集团有限公司招聘笔试题库及答案解析
- 招工简章模板(可编辑)
评论
0/150
提交评论