




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、卷 A 学期: 2011 至 2012 学年度第 1 学期一、Fill in the blanks with the proper concepts and formula for the contents of Chapter I. The volume体积 of a parallelepiped平行六面体 with axes轴 is defined定义 by: ;Please write out the five 2D Bravais lattices布拉维格子 as : 正方晶格、六角晶格、长方晶格、有心长方晶格和斜方晶格 ;The possible 14 primitive cells
2、原胞 are : 简单三斜晶格、简单立方晶格、体心立方晶格、面心立方晶格、三角晶格、六角晶格、简单单斜晶格、底心单斜晶格、简单正交晶格、底心正交晶格、体心正交晶格、面心正交晶格、简单四角晶格和体心四角晶格 ;For the plane whose intercepts are 4,2,3, the reciprocals倒数 are 1/4、1/2、1/3 ,the smallest three integers整数 having the same ratio比率 are 3、6、4 . The cube faces of a cubic crystal 立方晶体的立方体面are 二、 Exp
3、ression and the calculation for the contents of Chapter II.1)Please write out three vectors向量 of the reciprocal lattice倒格子: .by using vectors 。 b1=(2)·(a2*a3)/(a1·(a2*a3))
4、; b2=(2)·(a3*a1)/(a1·(a2*a3)) b3=(2)·(a1*a2)/(a1·(a2*a3)2) Calculate计算 the volume of the primitive cel
5、l of fcc lattice面心立方晶格:晶格基矢体积V=原胞基矢体积三、 Derivation for the contents of the contents of Chapter III. Please derive out the van der Waals-London Interaction范德瓦尔斯伦敦相互作用 from the linear harmonic oscillators model.线性谐振子模型解:作为一个模型,考虑两个值距为R的全同线性谐振子1和2,每个振子带有一个正电荷(+e)和一个负电荷(-e),正负电荷之间的距离分别为X1和X2,粒子沿X轴振动,动量分
6、别用R1和R2表示,力常量为C。在未受个数扰作用时,该系统的哈密顿量为:令表示两个振子之间的库伦相互作用能,核间坐标为R,于是有在的近似下,将上式展开,使得到最低级近似表达式为通过简正模变换:并解出X1和X2:同时取的近似形式,是系统的中哈密顿量对角化,可以得出这两种模式相联系的动量Ps和Pa,P1则总哈密顿量可以写成可得来。振子的两个频率为W=其中,W0=(c/m)(1/2)该系统的零点能量为由于存在相互作用,这个值比未。的值2-1/2V=四、Expression and the explanation for the contents of Chapter IV.1) Please wri
7、te out the dispersion relation 色散关系of (q) for two atoms原子 Per Primitive Basis每个原始依据 , and explain the physical meaning of the formula公式.五、 Concepts and the derivation for the contents of Chpater V. 1) What is the Debye model德拜模型 and Debye T3 lawT3法? What is the concept概念 of Debye temperature?2) Plea
8、se derive the Density of State in Three Dimension三维状态密度.六、Derivations for the contents of Chapter VI. 1) Please derive the formula公式 of energy levels of free electrons自由电子的能量水平 in one dimension维.2) Please derive the the Hall coefficient 霍尔系数of Hall effect.七、Explanation and derivation for the content
9、s of Chapter VII. Please explain the origin of the energy gap, and write out the free electron bands for 110 direction of wavevector space.Solution:olthe origin of the energy gap is the two standing waves and pile up electors at different regions and therefore the two waves have different values of
10、the potential energy ,Ihtsis the origin of the energy gap.2) the free electron bands for 110 direction of wavevetor space is Energy band Ga/2 (000) (0)1 000 0 2,3 100,00 4,5,6,7 010,00,001,00 8,9,10,11 110,101,10,10 12,13,14,15 10,16,17,18,19 八、Concepts and the explanation for the contents of Chapte
11、r VIII. 1) A hole acts in applied electric and magnetic fields as if it has a positive charge +e. The possible reasons in five steps are: Solution:1)the electrons in the full band the total wave vector is zero:2) let the valerve band energy zero point in the conduction band above3) the velocity of t
12、he hole is equal to the velocity of the missing electron.4) the effective mass is inversely propertional to the crrvature and for the hde band ,this has the opposite sum to that for an electron in the valence band.5)this come from the equation of motion 2) Please explian the physical meaning of ener
13、gy-k relation of following three semiconductor materials半导体材料 .卷 B 学期: 2011 至 2012 学年度第 1 学期一、Fill in the blanks with the proper data or concepts in Chapter I.Solid state physics largely concerned主要关注: (1)crystals晶体 (2) electrons in crystals ;Atoms density密度: ;Translation vector平移矢量: 3 translation v
14、ector vs a1、a2、a3 / ; The volume of a parallelepiped 平行六面体with axes is: ; The posibble five 2D Bravais lattice are : 正方晶格、六角晶格、长方晶格、有心长方晶格和斜方晶格 ; Seven lattice system are : 三斜、单斜、正交、立方、四角、六角和三角晶系 ;For the plane whose intercepts are 3,1,2, the reciprocals are 1/3、1/1、1/2 , ,the smallest three integer
15、s having the same ratio are ( 263 ) . The cube faces of a cubic crystal are (100)(010)( 001) (00)( 00)和(00) 二、Calculations for the contents of Chapter II.1) Please write out three vector of the reciprocal lattice: .Explain:2)Please verify验证 the relation: .3) Calculate the volume 体积of the primitive c
16、ell of bcc lattice:三、Calculations and the concept explanation for the contents of Chapter III. Please calculate the Madelung constant马德龙常数 for the infinite无限的 line of ions离子 of alternating sign交替的迹象 for the one-dimensional chain 一维链to be :四、Expression and exlanations for the contents of Chapter IV.
17、1) Please write out the 1D dispersion relation of (q), and explain the physical meaning of the formula.(q)=其中C是最近邻平面之间的力常量,M是一个原子的质量。The special signifcance of phonon wavevetors that lie on the zone.boundary is developed from the formula ,we can obtain when q=0,w(q)=0,when q= 2) What is the long wav
18、e limit长波极限 and what result结果 we can get from this limit?一维单原子链、一维双原子链中,q的取值都只在一定范围之内。(一维单 原子链: , 一维双原子链: ),长波极限就是q取值趋向于范 围边界时的情况。研究的意义在于了解极限情况下格波振动频率的情况。Or当qa<<1时,将cosqa展开并取得近似,可得cosqa1-.由此色散系度为表明在长波极限下,频率与波长成正比。五、 Explanations for the contents of Chapter V. 1) What is the Debye model and Deb
19、ye T3 law? What is the concept of Debye temperature?Solution:1)Debye model is the low of the Max planck blackbody radiation solid equivalents.in the Debye model ,the allow model vectors smaller than the K2) Debye T3 law is when T ,U=,that can obtain 3) Debye temperature can define 2) Please explain
20、the physics menaning of Umklapp Processes:UP过程:Solution:To the thermal nesistivity of electrons,which have more important effectthree phonon processes isnt ,it is ,G is reriprocal lattice vectors called Umklapp processes .In the processes the energy is constant .The phonon vector ,in the first ,Bril
21、louin zoneshas physics menaning .The umklapp processes can let the phonon vector back to the first Brillouin zones.六、 Derivation for the contents of Chapter VI 1) Please derive the formula of energy levels of free electrons in one dimension.请导出一维自由电子能级的公式Solution:For schrodinger equation ,we can obt
22、ain ,where is the electron orbital energy . To infintle potential boundary conditions We can obtain where A is a constant,so that we can obtain energy 3) Please derive the the Hall coefficient of Hall effect.请导出霍尔效应的霍尔系数 Solution:To the state electric field steady state ,the time derivative is zero
23、,then Vx=,where is eyctotion frequency ,when ,We can get .And the Hall coffinient defined is ,we can used to get .七、Explanation and the derivation for the contents of Chapter VII.Please explain the origin of the energy gap, and write out the free electron bands for 111 direction of wavevector space.请解释能隙的起源,并写了 111 方向的波矢空间的自由电子带。八、Deravation and the calculation for the contents of Chapter VIII第八章.1) Starting from the definition of group velocity vg , please give the effect mass m* described by the energy band vs wavevector k. 从群速Vg的定义,请把影响质量m *的能带与波矢k描述P1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 浙江国企招聘2025温州机场集团招聘31人笔试参考题库附带答案详解
- 保山职业学院《材料测试与研究方法》2023-2024学年第二学期期末试卷
- 江西冶金职业技术学院《社会医学与卫生事业管理》2023-2024学年第二学期期末试卷
- 深圳大学《数字系统设计基础》2023-2024学年第二学期期末试卷
- 湖北三峡职业技术学院《数字媒体艺术创作》2023-2024学年第二学期期末试卷
- 洛阳理工学院《微机原理及单片机应用技术》2023-2024学年第二学期期末试卷
- 四川美术学院《专题地图设计与编绘实验》2023-2024学年第二学期期末试卷
- 内蒙古体育职业学院《生活中的生物学》2023-2024学年第二学期期末试卷
- 青岛远洋船员职业学院《物流系统规划与设计》2023-2024学年第二学期期末试卷
- 北华航天工业学院《管理会计模拟实训》2023-2024学年第二学期期末试卷
- 情侣协议书电子版简单模板
- 广东省惠州市2025届高三数学第一次调研考试试题
- 英语话中国智慧树知到答案2024年吉林大学
- 沪教版数学三年级下册三位数乘两位数竖式计算题100道及答案
- 山东省2025届高三第二次模拟考试历史试卷含解析
- DL∕Z 860.1-2018 电力自动化通信网络和系统 第1部分:概论
- 2022版义务教育语文课程标准考试测试卷及答案(共三套)
- 2024年04月南昌市2024年第二次招考120名市级专职留置看护队员笔试笔试历年典型考题及考点研判与答案解析
- 康养旅游项目策划方案毕业设计(2篇)
- 《陆上风电场工程概算定额》NBT 31010-2019
- 《论语》全文原文版
评论
0/150
提交评论