




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、.历年高考数学易错知识点汇总数学在科学开展和现代生活消费中的应用非常广泛,小编准备了历年高考数学易错知识点,详细请看以下内容。1 易错点 遗忘空集致误错因分析:由于空集是任何非空集合的真子集,因此,对于集合B,就有B=A,B,B,三种情况,在解题中假如思维不够缜密就有可能无视了 B这种情况,导致解题结果错误。尤其是在解含有参数的集合问题时,更要充分注意当参数在某个范围内取值时所给的集合可能是空集这种情况。空集是一个特殊的集合,由于思维定式的原因,考生往往会在解题中遗忘了这个集合,导致解题错误或是解题不全面。2 易错点 无视集合元素的三性致误错因分析:集合中的元素具有确定性、无序性、互异性,集合
2、元素的三性中互异性对解题的影响最大,特别是带有字母参数的集合,实际上就隐含着对字母参数的一些要求。在解题时也可以先确定字母参数的范围后,再详细解决问题。3 易错点 四种命题的构造不明致误错因分析:假如原命题是假设 A那么B,那么这个命题的逆命题是假设B那么A,否命题是假设A那么B,逆否命题是假设B那么A。这里面有两组等价的命题,即原命题和它的逆否命题等价,否命题与逆命题等价。在解答由一个命题写出该命题的其他形式的命题时,一定要明确四种命题的构造以及它们之间的等价关系。另外,在否认一个命题时,要注意全称命题的否认是特称命题,特称命题的否认是全称命题。如对a,b都是偶数的否认应该是a,b不都是偶数
3、,而不应该是a ,b都是奇数。4 易错点 充分必要条件颠倒致误错因分析:对于两个条件A,B,假如A=B成立,那么A是B的充分条件,B是A的必要条件;假如B=A成立,那么A是B的必要条件,B是A的充分条件;假如AB,那么A,B互为充分必要条件。解题时最容易出错的就是颠倒了充分性与必要性,所以在解决这类问题时一定要根据充要条件的概念作出准确的判断。5 易错点 逻辑联结词理解不准致误错因分析:在判断含逻辑联结词的命题时很容易因为理解不准确而出现错误,在这里我们给出一些常用的判断方法,希望对大家有所帮助:p=p真或q真,p=p假且q假概括为一真即真;pq真p真且q真,pq假p假或q假概括为一假即假;p
4、真p假,p假p真概括为一真一假。函数与导数6 易错点 求函数定义域无视细节致误错因分析:函数的定义域是使函数有意义的自变量的取值范围,因此要求定义域就要根据函数解析式把各种情况下的自变量的限制条件找出来,列成不等式组,不等式组的解集就是该函数的定义域。在求一般函数定义域时要注意下面几点:1分母不为0;2偶次被开放式非负;3真数大于0;40的0次幂没有意义。函数的定义域是非空的数集,在解决函数定义域时不要忘记了这点。对于复合函数,要注意外层函数的定义域是由内层函数的值域决定的。7 易错点 带有绝对值的函数单调性判断错误错因分析:带有绝对值的函数本质上就是分段函数,对于分段函数的单调性,有两种根本
5、的判断方法:一是在各个段上根据函数的解析式所表示的函数的单调性求出单调区间,最后对各个段上的单调区间进展整合;二是画出这个分段函数的图象,结合函数图象、性质进展直观的判断。研究函数问题离不开函数图象,函数图象反响了函数的所有性质,在研究函数问题时要时时刻刻想到函数的图象,学会从函数图象上去分析问题,寻找解决问题的方案。对于函数的几个不同的单调递增减区间,千万记住不要使用并集,只要指明这几个区间是该函数的单调递增减区间即可。8 易错点 求函数奇偶性的常见错误错因分析:求函数奇偶性的常见错误有求错函数定义域或是无视函数定义域,对函数具有奇偶性的前提条件不清,对分段函数奇偶性判断方法不当等。判断函数
6、的奇偶性,首先要考虑函数的定义域,一个函数具备奇偶性的必要条件是这个函数的定义域区间关于原点对称,假如不具备这个条件,函数一定是非奇非偶的函数。在定义域区间关于原点对称的前提下,再根据奇偶函数的定义进展判断,在用定义进展判断时要注意自变量在定义域区间内的任意性。9 易错点 抽象函数中推理不严密致误错因分析:很多抽象函数问题都是以抽象出某一类函数的共同特征而设计出来的,在解决问题时,可以通过类比这类函数中一些详细函数的性质去解决抽象函数的性质。解答抽象函数问题要注意特殊赋值法的应用,通过特殊赋值可以找到函数的不变性质,这个不变性质往往是进一步解决问题的打破口。抽象函数性质的证明是一种代数推理,和
7、几何推理证明一样,要注意推理的严谨性,每一步推理都要有充分的条件,不可漏掉一些条件,更不要臆造条件,推理过程要层次清楚,书写标准。10 易错点 函数零点定理使用不当致误错因分析:假如函数y=fx在区间a,b上的图象是连续不断的一条曲线,并且有fafb0,那么,函数y=fx在区间a,b内有零点,即存在ca,b,使得fc=0,这个c也是方程fc=0的根,这个结论我们一般称之为函数的零点定理。函数的零点有变号零点和不变号零点,对于不变号零点,函数的零点定理是无能为力的,在解决函数的零点时要注意这个问题。11 易错点 混淆两类切线致误错因分析:曲线上一点处的切线是指以该点为切点的曲线的切线,这样的切线
8、只有一条;曲线的过一个点的切线是指过这个点的曲线的所有切线,这个点假如在曲线受骗然包括曲线在该点处的切线,曲线的过一个点的切线可能不止一条。因此求解曲线的切线问题时,首先要区分是什么类型的切线。12 易错点 混淆导数与单调性的关系致误错因分析:对于一个函数在某个区间上是增函数,假如认为函数的导函数在此区间上恒大于0,就会出错。研究函数的单调性与其导函数的关系时一定要注意:一个函数的导函数在某个区间上单调递增减的充要条件是这个函数的导函数在此区间上恒大小于等于0,且导函数在此区间的任意子区间上都不恒为零。13 易错点 导数与极值关系不清致误错因分析:在使用导数求函数极值时,很容易出现的错误就是求
9、出使导函数等于0的点,而没有对这些点左右两侧导函数的符号进展判断,误以为使导函数等于0的点就是函数的极值点。出现这些错误的原因是对导数与极值关系不清。可导函数在一个点处的导函数值为零只是这个函数在此点处取到极值的必要条件,在此提醒广阔考生在使用导数求函数极值时一定要注意对极值点进展检验。数列14 易错点 用错根本公式致误错因分析:等差数列的首项为a1、公差为d,那么其通项公式an=a1+n-1d,前n项和公式Sn=na1+nn-1d/2=a1+and/2;等比数列的首项为a1、公比为q,那么其通项公式an=a1pn-1,当公比q1时,前n项和公式Sn=a11-pn/1-q=a1-anq/1-q
10、,当公比q=1时,前n项和公式Sn=na1。在数列的根底性试题中,等差数列、等比数列的这几个公式是解题的根本,用错了公式,解题就失去了方向。15 易错点 an,Sn关系不清致误错因分析:在数列问题中,数列的通项an与其前n项和Sn之间存在关系:这个关系是对任意数列都成立的,但要注意的是这个关系式是分段的,在n=1和n2时这个关系式具有完全不同的表现形式,这也是解题中经常出错的一个地方,在使用这个关系式时要牢牢记住其分段的特点。当题目中给出了数列an的an与Sn之间的关系时,这两者之间可以进展互相转换,知道了an的详细表达式可以通过数列求和的方法求出Sn,知道了Sn可以求出an,解题时要注意体会
11、这种转换的互相性。16 易错点 对等差、等比数列的性质理解错误错因分析:等差数列的前n项和在公差不为0时是关于n的常数项为0的二次函数。一般地,有结论假设数列an的前N项和Sn=an2+bn+ca,b,cR,那么数列an为等差数列的充要条件是c=0在等差数列中,Sm,S2m-Sm,S3m-S2mmN*是等差数列。解决这类题目的一个根本出发点就是考虑问题要全面,把各种可能性都考虑进去,认为正确的命题给以证明,认为不正确的命题举出反例予以驳斥。在等比数列中公比等于-1时是一个很特殊的情况,在解决有关问题时要注意这个特殊情况。17 易错点 数列中的最值错误错因分析:数列的通项公式、前n项和公式都是关
12、于正整数的函数,要擅长从函数的观点认识和理解数列问题。但是考生很容易无视n为正整数的特点,或即使考虑了n为正整数,但对于n取何值时,可以取到最值求解出错。在关于正整数n的二次函数中其取最值的点要根据正整数间隔 二次函数的对称轴远近而定。要练说,先练胆。说话胆小是幼儿语言开展的障碍。不少幼儿当众说话时显得害怕:有的结巴重复,面红耳赤;有的声音极低,自讲自听;有的低头不语,扯衣服,扭身子。总之,说话时外部表现不自然。我抓住练胆这个关键,面向全体,偏向差生。一是和幼儿建立和谐的语言交流关系。每当和幼儿讲话时,我总是笑脸相迎,声音亲切,动作亲昵,消除幼儿畏惧心理,让他能主动的、无拘无束地和我交谈。二是
13、注重培养幼儿敢于当众说话的习惯。或在课堂教学中,改变过去老师讲学生听的传统的教学形式,取消了先举手后发言的约束,多采取自由讨论和谈话的形式,给每个幼儿较多的当众说话的时机,培养幼儿爱说话敢说话的兴趣,对一些说话有困难的幼儿,我总是认真地耐心地听,热情地帮助和鼓励他把话说完、说好,增强其说话的勇气和把话说好的信心。三是要提明确的说话要求,在说话训练中不断进步,我要求每个幼儿在说话时要仪态大方,口齿清楚,声音响亮,学会用眼神。对说得好的幼儿,即使是某一方面,我都抓住教育,提出表扬,并要其他幼儿模拟。长期坚持,不断训练,幼儿说话胆量也在不断进步。18 易错点 错位相减求和时项数处理不当致误错因分析:错位相减求和法的适用环境是:数列是由一个等差数列和一个等比数列对应项的乘积所组成的,求其前n项和
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 城市雕塑招标打造艺术作品3篇
- 公证处委托书出具流程3篇
- 戒烟保证书的模板范文3篇
- 安全责任时刻警惕3篇
- 小产权转让有效简单协议书3篇
- 外业勘察分包合同样本模板范例3篇
- 买房委托书撰写3篇
- 电缆的热稳定性与热失控预防措施考核试卷
- 电信企业服务创新与业务增长策略考核试卷
- 育种中激素信号网络的调控考核试卷
- T-CPMA 034-2023 医务人员医院感染预防与控制
- 肺部感染的护理课件
- 2024年风力发电运维值班员(高级工)理论考试题库-下(判断题部分)
- 2022年信创产业发展基础知识
- 有余数的除法算式300题
- 2024年度医患沟通课件
- 2024年安徽六安市“政录企用”人才引进招聘笔试参考题库含答案解析
- CJJ82-2012 园林绿化工程施工及验收规范
- 水泵维保方案
- 2024年医药卫生考试-医院设备科笔试历年真题荟萃含答案
- 园林植物的识别与应用-草本花卉的识别与应用
评论
0/150
提交评论