




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、.多种函数穿插综合问题以下是查字典数学网为您推荐的 多种函数穿插综合问题,希望本篇文章对您学习有所帮助。多种函数穿插综合问题【例1】将直线 沿 轴向下平移后,得到的直线与 轴交于点 ,与双曲线 交于点 .求直线 的解析式;假设点 的纵标为 ,求 的值用含有 的式子表示.【思路分析】这种平移一个一次函数与反比例函数交与某一点的题目非常常见,一模中有多套题都是这样考法。题目一般不难,设元以后计算就可以了。此题先设平移后的直线,然后联立即可。比较简单,看看就行.【解析】将直线 沿 轴向下平移后经过x轴上点A ,设直线AB的解析式为 .那么 .解得 .直线AB的解析式为 .图32设点 的坐标为 ,直线
2、 经过点 ,点的坐标为 ,点 在双曲线 上,【例2】如图,一次函数 的图象与反比例函数 的图象相交于A、B两点.1求出这两个函数的解析式;2结合函数的图象答复:当自变量x的取值范围满足什么条件时,【思路分析】第一问直接看图写出A,B点的坐标-6,-24,3,直接代入反比例函数中求m,建立二元一次方程组求k,b。继而求出解析式。第二问通过图像可以直接得出结论。此题虽然简单,但是事实上却有很多变化。比方不给图像,直接给出解析式求 的区间,考生是否仍然能反映到用图像来看区间。数形结合是初中数学当中非常重要的一个思想,希望大家要活用这方面的意识去解题。【解析】解:1由图象知反比例函数 的图象经过点B4
3、,3,.m=12. -反比例函数解析式为 .由图象知一次函数 的图象经过点A-6,-2 , B4,3,解得 -一次函数解析式为 .2当0【例3】:如图,正比例函数 的图象与反比例函数 的图象交于点1试确定上述正比例函数和反比例函数的表达式;2根据图象答复,在第一象限内,当 取何值时,反比例函数的值大于正比例函数的值?3 是反比例函数图象上的一动点,其中 ,过点 作直线 轴,交 轴于点 ;过点 作直线 轴交 轴于点 ,交直线 于点 .当四边形 的面积为6时,请判断线段 与 的大小关系,并说明理由.【思路分析】第一问由于给出了一个定点,所以直接代点即可求出表达式。第二问那么是利用图像去分析两个函数
4、的大小关系,考生需要对坐标系有直观的认识。第三问略有难度,一方面需要分析给出四边形OADM的面积是何用意,另一方面也要去看BM,DM和图中图形面积有何关系.视野放开就发现四边形其实就是整个矩形减去两个三角形的剩余部分,直接求出矩形面积即可.部分同学会太在意四边形的面积如何求解而没能拉出来看,从而没有想到思路,失分可惜.【解析】解:1将 分别代入 中 ,得 , ,反比例函数的表达式为: ;正比例函数的表达式为 .2观察图象得,在第一象限内,当 时,反比例函数的值大于正比例函数的值.3 .理由: ,即 .很巧妙的利用了和的关系求出矩形面积【例4】: 与 两个函数图象交点为 ,且 , 是关于 的一元
5、二次方程 的两个不等实根,其中 为非负整数.1求 的值;2求 的值;3假如 与函数 和 交于 两点点 在点 的左侧,线段 ,求 的值.【思路分析】此题看似有一个一元二次方程,但是本质上仍然是正反比例函数交点的问题。第一问直接用判别式求出k的范围,加上非负整数这一条件得出k的详细取值。代入方程即可求出m,n,继而求得解析式。注意题中已经给定m【解析】1 为非负整数, 为一元二次方程2把 代入方程得 , 解得把 代入 与可得3把 代入 与可得 , ,由 ,可得解得 ,经检验 为方程的根。【例5】:如图,一次函数 与反比例函数 的图象在第一象限的交点为 .1求 与 的值;2设一次函数的图像与 轴交于
6、点 ,连接 ,求 的度数.【思路分析】假如一道题单纯考正反比例函数是不会太难的,所以在中考中经常会综合一些其他方面的知识点。比方此题求角度就牵扯到了勾股定理和特定角的三角函数方面,需要考生思维转换要迅速。第一问比较简单,不说了。第二问先求出A,B详细点以后此题就变化成了一道三角形内线段角的计算问题,利用勾股定理发现OB=OA,从而BAO=ABO,然后求出BAO即可。解:1点 在双曲线 上,又 在直线 上,2过点A作AMx轴于点M. 直线 与 轴交于点 ,解得 .点 的坐标为 .点 的坐标为 ,在Rt 中, ,由勾股定理,得 .【总结】中考中有关一次函数与反比例函数的问题一般都是成对出现的。无非
7、也就一下这么几个考点:1、给交点求解析式;2,y的比较,3,夹杂进其他几何问题。除了注意计算方面的问题以外,还需要考生对数形结合,分类讨论的思想掌握纯熟。例如y的比较这种问题,纯用代数方式通常需要去解一个一元二次不等式,但是假如用图像去做就会比较简单了。总体来说这类问题不难,做好细节就可以获得全分。第二部分 发散考虑【考虑1】如图,A、B两点在函数 的图象上.1求 的值及直线AB的解析式;2假如一个点的横、纵坐标均为整数,那么我们称这个点是格点.请直接写出图中阴影部分不包括边界所含格点的个数。【思路分析】由于已经给出了点,第一问没有难度。第二问在于要分析有哪些格点在双曲线的边界上,哪些格点在其
8、中。保险起见直接用1-6的整数挨个去试,由于数量较少,所以可以很明显看出。【考虑2】如图,一次函数 的图象与反比例函数 的图象交 于两点,直线 分别交 轴、 轴于 两点.1求上述反比例函数和一次函数的解析式;2求 的值.【思路分析】第一问一样是用代点以及列二元一次方程组去求解析式。第二问看到比例关系,考生需要第一时间想到是否可以用相似三角形去分析。但是图中并未直接给出可能的三角形,所以需要从A引一条垂线来构成一对相似三角形,从而求解。【考虑3】:关于x的一元二次方程kx2+2k-3x+k-3 = 0有两个不相等实数根k0.I用含k的式子表示方程的两实数根;II设方程的两实数根分别是 , 其中
9、,假设一次函数y=3k-1x+b与反比例函数y = 的图像都经过点x1,kx2,求一次函数与反比例函数的解析式.【思路分析】此题是一道多种函数穿插的典型例题,一方面要解方程,另一方面还要求函数解析式。第一问求根,直接求根公式去做。第二问通过代点可以建立一个比较繁琐的二元一次方程组,认真计算就可以。【考虑4】如图,反比例函数 的图象过矩形OABC的顶点B,OA、0C分别在x轴、y轴的正半轴上,OA:0C=2:1.1设矩形OABC的对角线交于点E,求出E点的坐标;2假设直线 平分矩形OABC面积,求 的值【思路分析】此题看似费事,夹杂了一次函数与反比例函数以及图形问题。但是实际上画出图,通过比例可
10、以很轻易发现B点的横纵坐标关系,巧妙设点就可以轻松求解。第二问更不是难题,平分面积意味着一定过B点,代入即可。第三部分 考虑题解析【考虑1解析】1由图象可知,函数 的图象经过点 ,可得 .设直线 的解析式为 . , 两点在函数 的图象上,解得直线 的解析式为 .2图中阴影部分不包括边界所含格点的个数是 3 .【考虑2解析】1把 , 代入 ,得: .反比例函数的解析式为 .把 , 代入 得 .把 , ; , 分别代入得 , 第16题答图解得 , 一次函数的解析式为 .2过点 作 轴于点 .点的纵坐标为1, .由一次函数的解析式为 得 点的坐标为 ,在 和 中, , ,【考虑3解析】解:I kx2
11、+2k-3x+k-3 = 0是关于x的一元二次方程.由求根公式,得. 或II , .而 , , .由题意,有解之,得 .一次函数的解析式为 ,反比例函数的解析式为 .【考虑4解析】1由题意,设B ,那么B在第一象限,B4,2矩形OABC对角线的交点E为2直线 平分矩形OABC必过点1=2x2+m要练说,先练胆。说话胆小是幼儿语言开展的障碍。不少幼儿当众说话时显得害怕:有的结巴重复,面红耳赤;有的声音极低,自讲自听;有的低头不语,扯衣服,扭身子。总之,说话时外部表现不自然。我抓住练胆这个关键,面向全体,偏向差生。一是和幼儿建立和谐的语言交流关系。每当和幼儿讲话时,我总是笑脸相迎,声音亲切,动作亲
12、昵,消除幼儿畏惧心理,让他能主动的、无拘无束地和我交谈。二是注重培养幼儿敢于当众说话的习惯。或在课堂教学中,改变过去老师讲学生听的传统的教学形式,取消了先举手后发言的约束,多采取自由讨论和谈话的形式,给每个幼儿较多的当众说话的时机,培养幼儿爱说话敢说话的兴趣,对一些说话有困难的幼儿,我总是认真地耐心地听,热情地帮助和鼓励他把话说完、说好,增强其说话的勇气和把话说好的信心。三是要提明确的说话要求,在说话训练中不断进步,我要求每个幼儿在说话时要仪态大方,口齿清楚,声音响亮,学会用眼神。对说得好的幼儿,即使是某一方面,我都抓住教育,提出表扬,并要其他幼儿模拟。长期坚持,不断训练,幼儿说话胆量也在不断进步。m=-3课本、报刊杂志中的成语、名言警句等俯首皆是,但学生写作文运用到文章中的甚少,即使运用也很难做到恰如其分。为什么?还是没有彻底“记死的缘故。要解决这个问题,方法很简单,每天花3-5分
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 12279.3-2025心血管植入器械人工心脏瓣膜第3部分:经导管植入式人工心脏瓣膜
- GB/T 32934-2025全球热带气旋中文命名
- 如何讲好线上培训课件
- 小学生认识火箭课件图片
- 《医疗护理礼仪》课件
- 路人王签约合同协议
- 《中风后康复之路》课件
- 车间劳务外包合同协议
- 转让押金无合同协议
- 转让软件系统合同协议
- 中建全套雨季施工方案
- 三位数加减三位数竖式计算题100道及答案
- 北京工业大学《计量经济学》2023-2024学年第一学期期末试卷
- 江西省会计师事务所服务收费标准
- 人工智能应用开发合同
- 与信仰对话 课件-2024年入团积极分子培训
- 高三英语一轮复习备考实践经验分享 课件
- 小学五年级体育教案全册(人教版)
- 新人教版高中英语必修二 unit 5词汇默写本
- 2024至2030年中国节能服务产业市场预测及投资策略分析报告
- 六年级《语文下册》期末试卷及答案【可打印】
评论
0/150
提交评论