大学物理学_第四章机械振动_第1页
大学物理学_第四章机械振动_第2页
大学物理学_第四章机械振动_第3页
大学物理学_第四章机械振动_第4页
大学物理学_第四章机械振动_第5页
已阅读5页,还剩43页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、14.1 简谐振动及其描述简谐振动及其描述4.2 简谐振动的动力学方程简谐振动的动力学方程4.3 简谐振动的能量简谐振动的能量4.4 简谐振动的合成简谐振动的合成4.5 阻尼振动阻尼振动 受迫振动受迫振动 共振共振作业:作业:2、8、10、11、12、13、14、15、16、17.2 因为振动是声学、地震学、建筑力学等必须的因为振动是声学、地震学、建筑力学等必须的基础知识,自然界中还有许多现象,如交变电流、基础知识,自然界中还有许多现象,如交变电流、 交变的电磁场等,都属于广义的振动现象。这些运交变的电磁场等,都属于广义的振动现象。这些运动的本质虽然并非机械运动,但运动规律的数学描动的本质虽然

2、并非机械运动,但运动规律的数学描述却与机械振动类似。因此,述却与机械振动类似。因此, 机械振动的研究也机械振动的研究也为光学、电学、为光学、电学、 交流电工学、无线电技术等打下交流电工学、无线电技术等打下了一定的基础。了一定的基础。 任何一种复杂的机械振动都可以看成多个简谐任何一种复杂的机械振动都可以看成多个简谐振动的叠加。振动的叠加。学习机械振动的意义学习机械振动的意义 一个物理量的取值在某一数值附近作来回 往复 的变化则称该物理量在振动。 机械振动 物体在某一位置附近作来回往复的运动。 振动在空间的传播。波动振动4阅读材料阅读材料: :频谱分析频谱分析利用付里叶分解可将任意振动分解成若干简

3、谐振动利用付里叶分解可将任意振动分解成若干简谐振动( (S.H.V.) ) simple harmonic vibration 的叠加的叠加 (合成的逆运算)。合成的逆运算)。 对周期性振动:对周期性振动: T 周期周期) cos(2)(10kkktkAatxT2=k = 1 基频基频( ) k = 2 二次谐频二次谐频(2 ) k = 3 三次谐频三次谐频(3 )决定决定音调音调决定决定音色音色高次谐频高次谐频5物理上:物理上:一般振动是多个简谐振动的合成一般振动是多个简谐振动的合成数学上:数学上: 付氏级数付氏级数 付氏积分付氏积分也可以说也可以说 S.H.V.是振动的基本模型是振动的基本

4、模型或说或说 振动的理论建立在振动的理论建立在S.H.V.的基础上。的基础上。) cos(2)(10kkktkAatx4.1 简谐振动及其描述简谐振动及其描述 简谐振动:简谐振动:物体运动时,离开平衡位置的位移物体运动时,离开平衡位置的位移( (或角或角位移位移) )按余弦按余弦( (或正弦或正弦) )规律随时间变化。规律随时间变化。)cos(0tAx速度速度)sin(dd0tAtxv加速度加速度)cos(dd0222tAtxa6:A离开平衡位置的最大距离。圆频率:秒内所作的全振动次数 2单位时间内所作的全振动的次数T2完成一次全振动所需的时间T1:初位相。周期: . ( 时刻的位相):tt:

5、, A简谐振动的特征参量简谐振动的特征参量.振幅:频率:71 振动曲线法振动曲线法t (s)x(m)00.020.51.0)2 2cos(02. 0tx二 简谐振动的几何描述方法8x x = A cos( t + 0) 0oxt = 0A t+ 0t = tA优点:优点: 初位相直观明确。初位相直观明确。 比较两个简谐振动的位相比较两个简谐振动的位相差直观明确。差直观明确。2.旋转矢量法旋转矢量法1212)()(tt2A2 1A1x09oxA2A1A31212)()(tt) 12(k(A2、A3) 两个振动为反相两个振动为反相. .(A1、A2) 两个振动为同相;两个振动为同相;k2例例: :

6、一物体沿一物体沿X轴作简谐振动,振幅轴作简谐振动,振幅A=0.12m,周期周期T=2s。当当t=0时时, ,物体的位移物体的位移x=0.06m, ,且向且向 X 轴正向运动。轴正向运动。求求:(1):(1)简谐振动表达式简谐振动表达式;(2) ;(2) t =T/4时物体的位置、速度时物体的位置、速度和加速度和加速度;(3);(3)物体从物体从x = -0.06m向向X轴负方向运动,第一轴负方向运动,第一次回到平衡位置所需时间。次回到平衡位置所需时间。10例例: :一物体沿一物体沿X轴作简谐振动,振幅轴作简谐振动,振幅A=0.12m,周期周期T=2s。当当t=0时时, ,物体的位移物体的位移x

7、=0.06m, ,且向且向X轴正向运动。求轴正向运动。求:(1):(1)简谐振动简谐振动表达式表达式;(2) ;(2) t =T/4时物体的位置、速度和加速度时物体的位置、速度和加速度;(3);(3)物体从物体从x = -0.06m向向X轴负方向运动,第一次回到平衡位置所需时间。轴负方向运动,第一次回到平衡位置所需时间。解解: (1): (1)取平衡位置为坐标原点取平衡位置为坐标原点, ,谐振动表达式写为:谐振动表达式写为:)cos(0tAx其中其中A=0.12m, T=2s, T2初始条件:初始条件:t = 0, x0=0.06m,可得可得06. 0cos12. 0030, 0sin00Av

8、30) 3cos(12. 0tx(2) (2) 由由(1)(1)求得的简谐振动表达式得求得的简谐振动表达式得: :) 3sin(12. 0ddttxv) 3cos(12. 0dd2ttva在在t =T/4=0.5s时时,代入所列的表达式可求代入所列的表达式可求! !11(3) (3) 当当x = -0.06m时时,该时刻设为该时刻设为t1 1, ,得得21) 3cos(1t34,3231t因该时刻速度为负因该时刻速度为负( (向向x轴负方向运动轴负方向运动) ), ,应舍去应舍去4 4 /3/3,设物体在设物体在t2 2时刻第一次回到平衡位置时刻第一次回到平衡位置( (x=0)=0),相位是,

9、相位是3 3 /22332ts83. 12t因此从因此从x = -0.06m处第一次回到平衡位置的时间处第一次回到平衡位置的时间:。s83. 012ttt另解另解:从从t1 1时刻到时刻到t2 2时刻所对应的相差为时刻所对应的相差为:653223s83. 0tx1320 x23 振幅矢量的角速度振幅矢量的角速度 , t= ) 3cos(12. 0tx) 3sin(12. 0ddttxv12例一 弹簧振子0 dd222xtx2mk令0 dd22xmktx dd 22txmkx maf 而整理得:xox kxf f4.2 简谐振动的动力学问题简谐振动的动力学问题一 简谐振动实例) cos(tAx解

10、得:13二 简谐振动特征参量的确定), (A1:由系统本身的结构确定。,A2:由初始条件确定。确定和即由时的位置坐标和速度,000vxt 2简谐振动的证明: 0 t222xdxd) cos( tAx114cos0Axsin 0Av22020vxA00 tgxv) t(cos Ax) t(sin Av:0t15(1)单摆)单摆 mmg几种常见的简谐振动几种常见的简谐振动sinmgM重力的切向分力:重力的切向分力:.! 5! 3sin53sintmamgsin)(ta22ddsintmmg 很小很小, ,小于小于50 时,时,0dd22gtg2令gT2所以:单摆作小角度摆动,也是谐振动(角所以:单

11、摆作小角度摆动,也是谐振动(角谐振动)。重力的分力(准弹性力)。谐振动)。重力的分力(准弹性力)。0dd222t通解为:通解为:)cos(0tm16(2)复摆复摆一个可绕固定轴摆动的刚体称为复摆。一个可绕固定轴摆动的刚体称为复摆。 刚体的质心为刚体的质心为C, , 对过对过O 点的转轴的点的转轴的转动惯量为转动惯量为I, , O、C 两点间的距离为两点间的距离为h。令令据转动定律,得据转动定律,得若若 角度较小时角度较小时sindd22mghtImghtI22ddImgh20dd222tmghIT22gmCOh17例1. 已知一弹簧振子,振幅为,频率为 , A。 0,2:000vAxt求振动方

12、程。)3- tcos( Ax 2cos:00AAxt0sin 0Av33) tcos( Ax解18hMkm0 xmMghmv2022020vxA00 tgxv例2. 如图示,在倔强系数为k的弹簧下,挂一质量为M的托盘。质量为m的物体由距盘底高h处自由下落与盘做完全非弹性碰撞,而使其作简谐振动,设两物体碰后瞬时为t=0时刻,求振动方程。 x?第几象限kmggkMkmMx)(0解: 关键是求振幅和初位相,取碰后m+M整体振动的平衡位置位坐标原点,向下为x轴正方向,则初始条件为19 例例3. 已知某简谐振动的曲线如图所示已知某简谐振动的曲线如图所示,试写出该振动的位移与时间的关系试写出该振动的位移与

13、时间的关系. 解解:简谐振动的方程为简谐振动的方程为x=Acos(t+),其中其中A=6.010-2m. 当当t=0时时,x0=A/2由曲线可知由曲线可知:当当t=0时时,切线的斜率大于零切线的斜率大于零,因此速度因此速度v00,所以所以=-/3. 当当t=1s时时x=0由曲线可知由曲线可知:当当t=1s时时,切线的斜率切线的斜率小于零小于零,因此因此v0所以所以- /3 =/2,可得可得=/2+/3=5/6.简谐振动简谐振动的方程为的方程为256.0 10 cos()m63.xt(由曲线可知由曲线可知:当当t=1s时时,位位移由正值变为负值移由正值变为负值,旋转旋转矢量应该处于矢量应该处于/

14、2的位置的位置,亦可知亦可知- /3 =/2.)t/s06x/cm31xO-/3= /2=-/3t=0t=1s20简谐振动的能量简谐振动的能量( (以水平弹簧振子为例以水平弹簧振子为例) )(1) (1) 动能动能4.3 简谐振动的能量简谐振动的能量)(sin212102222tAmmvEK0,21min2maxkkEkAE2411kAdtETETttkk)(sin21022tkA)(cos21210222tkAkxEP(2) (2) 势能势能情况同动能情况同动能。pppEEE,minmax系统总的机械能:系统总的机械能:221kAEEEpk简谐振动系统机械能守恒简谐振动系统机械能守恒) (s

15、in 0tAvmk21谐振子的动能、势能和总能量随时间的变化曲线谐振子的动能、势能和总能量随时间的变化曲线: :221kAE PEkEE0ttAxcos0tx241kAEEpk22简谐振动的动力学解法简谐振动的动力学解法1. 由分析受力出发由分析受力出发( (由牛顿定律列方程由牛顿定律列方程) )2. 由分析能量出发由分析能量出发( (将能量守恒式对将能量守恒式对t 求导求导) )例:例:弹簧竖直放置时物体的振动。弹簧竖直放置时物体的振动。m0l0 xxxo弹簧原长弹簧原长挂挂m后伸长后伸长某时刻某时刻m位置位置f伸伸 长长受弹力受弹力平衡位置平衡位置k解:求平衡位置解:求平衡位置mgkx 0

16、kmgx 0以平衡位置以平衡位置O为原点为原点kxkxkxmgxxkmgF00)(因此因此, , 此振动为简谐振动。此振动为简谐振动。23如果振动系统除去本身如果振动系统除去本身恢复力之外还有其它恒恢复力之外还有其它恒力作用。振动系统仍作力作用。振动系统仍作简谐振动。以振动系统简谐振动。以振动系统在恒力作用下的平衡位在恒力作用下的平衡位置为原点,则可按常规置为原点,则可按常规立刻写出简谐振动的微立刻写出简谐振动的微分方程或振动表达式。分方程或振动表达式。在本例中在本例中0dd22xmktx)cos(tAxm0l0 xxxo弹簧原长弹簧原长挂挂m后伸长后伸长某时刻某时刻m位置位置f伸伸 长长受弹

17、力受弹力平衡位置平衡位置k24例:一质量为例:一质量为m的物体从倾角为的物体从倾角为 的光滑斜面顶点处由静的光滑斜面顶点处由静止滑下,滑行止滑下,滑行 后远后与质量为后远后与质量为M 的物体发生完全非弹性的物体发生完全非弹性碰撞。碰撞。M与倔强系数为与倔强系数为k的弹簧相连,碰前的弹簧相连,碰前M 静止于斜面。静止于斜面。求:运动方程。求:运动方程。 mMk解解1:取取m与与M 碰撞连在一起碰撞连在一起后的平衡位置为坐标原点。后的平衡位置为坐标原点。设此时弹簧在设此时弹簧在m与与M的压的压缩下退了缩下退了x0 。x0原长原长Mmx0 坐标系如图坐标系如图0X,0sin)(kxgMmkxtxMm

18、22dd)(以振动系统在恒力作用下的平衡位置以振动系统在恒力作用下的平衡位置为原点,则可按常规立刻写出简谐振为原点,则可按常规立刻写出简谐振动的微分方程或振动表达式。动的微分方程或振动表达式。kxxxkgMmtxMm)(sin)(/dd)(022,25例:一质量为例:一质量为m的物体从倾角为的物体从倾角为 的光滑斜面顶点处由静的光滑斜面顶点处由静止滑下,滑行止滑下,滑行 后远后与质量为后远后与质量为M的物体发生完全非弹性的物体发生完全非弹性碰撞。碰撞。M与倔强系数为与倔强系数为k的弹簧相连,碰前的弹簧相连,碰前M静止于斜面。静止于斜面。求:运动方程。求:运动方程。kxtxMm22dd)(Mmk

19、以以碰撞时作为碰撞时作为记时起点记时起点动量守恒动量守恒sin20gMmmv初位置初位置sin0gkmx002020/xvtgvxA)cos(tAxA和和 0由初始条件由初始条件确定确定26CkxvMm2221)(210dd)(kxtvMm0dd)(22kxtxMm解解2 : 取平衡位置取平衡位置(x = 0)为为系统势能系统势能的零点。的零点。系统机械能守恒,有系统机械能守恒,有简谐振动的动力学解法简谐振动的动力学解法2. 由分析能量出发由分析能量出发( (将能量守恒式对将能量守恒式对t 求导求导) )Mmk27解:平衡时解:平衡时0 点为坐标原点为坐标原点。物体运动到点。物体运动到x 处时

20、,处时,速度为速度为v .设此时弹簧的长度为设此时弹簧的长度为L,ddvLltxLl速度为:速度为:弹簧、物体的动能分别为:弹簧、物体的动能分别为:202161)d(21vvmLllLmELK2221vMEK例:劲度系数为例:劲度系数为k、质量为质量为m 的均匀弹簧的均匀弹簧,一端固定,另一端,一端固定,另一端系一质量为系一质量为M 的物体,在光滑水平面内作直线运动。求解其的物体,在光滑水平面内作直线运动。求解其运动。运动。( ( m M ) )前提前提: 弹簧各等长小段变形弹簧各等长小段变形相同,位移是线性规律相同,位移是线性规律弹簧元弹簧元dl的质量的质量lLmmdd位移为位移为xLlxX

21、M0vdll28系统弹性势能系统弹性势能为为系统机械能守恒,有系统机械能守恒,有将上式对时间求导,将上式对时间求导,整理后可得整理后可得 因此,弹簧质量小于物体质量,且系统作微运动时,因此,弹簧质量小于物体质量,且系统作微运动时,弹簧振子的运动可视为是简谐运动。弹簧振子的运动可视为是简谐运动。常数常数常数常数22kxEP222216121kxmMvv2221)3(21kxmMv0dd)3(kxtmMv03dd22xmMktx2kmMT) 3(22294.4 简谐振动的合成简谐振动的合成1.1.同方向同频率的两个简谐振动的合成同方向同频率的两个简谐振动的合成分振动分振动 :x1=A1cos( t

22、+ 10)x2=A2cos( t+ 20)合振动合振动 : x = x1+ x2 x =A cos( t+ 0 )合振动是简谐振动合振动是简谐振动, 其频率仍为其频率仍为 两个同方向同频率两个同方向同频率简谐振动的合成仍简谐振动的合成仍是简谐振动。合振是简谐振动。合振动的频率与分振动动的频率与分振动的频率相同。的频率相同。 30) cos(111tAx) cos(222tAxA1A2A1xA1xA2xA12ox221xxx) cos(tA) ( cos 2122122212AAAAAyA2yA1221122112121coscossinsin tgAAAAAAAAxxyyox1A2AnAA12

23、A一 同直线上 同频率简谐振动的合成31两种特殊情况两种特殊情况 (1)若两分振动同相若两分振动同相 20 10 = 2k ( k = 0,1,2, ) (2)若两分振动反相若两分振动反相 20 10 = (2k+1) ( k = 0,1,2, )如如 A1=A2 , 则则 A=0则则A=A1+A2 , 两分振动相互加强两分振动相互加强则则A=|A1-A2|, 两分振动相互减弱两分振动相互减弱)cos(21020212221AAAAA两个振动的位相差,对合成振动起着重要的作用,这种两个振动的位相差,对合成振动起着重要的作用,这种现象在波的干涉与衍射中具有特殊的意义现象在波的干涉与衍射中具有特殊

24、的意义 323.3.同方向不同频率的两个简谐振动的合成同方向不同频率的两个简谐振动的合成 拍拍两个简谐振动的频率两个简谐振动的频率 1和和 2很接近,且很接近,且12两个简谐振动合成得:两个简谐振动合成得:)2cos()2cos(201212ttAxx = x1+ x2合振动可视为合振动可视为角频率为角频率为( 1+ 2)/2、振幅为、振幅为|2Acos( 2 - 1)t/2| 的准简谐振动。的准简谐振动。随时间变化很慢可随时间变化很慢可看作合振动的振幅看作合振动的振幅随时间变化较快可随时间变化较快可看作作谐振动的部分看作作谐振动的部分)cos(),cos(022011tAxtAx331AoX

25、12A2A, 同一直线上同一直线上 不同频率简谐振动合成不同频率简谐振动合成旋转矢量旋转矢量几何法分析几何法分析) cos(2222tAx) cos(1111tAx重合:重合:21AAA21AAA反向:反向:12121222T121221T拍拍: :合振动忽强忽弱的现象合振动忽强忽弱的现象34561拍频拍频: 单位时间内强弱变化单位时间内强弱变化的次数的次数 =| 2- 1| 好拍频.swf35两个同频率的相互垂直的分运动位移表达式两个同频率的相互垂直的分运动位移表达式消时间参数,得消时间参数,得)cos(101tAx)(sin)cos(210202102021222212AyAxAyAx)c

26、os(202tAy 合运动一般是在合运动一般是在2A1 ( x 向向)、2A2 2 ( y 向向)范围内范围内的一个椭圆。的一个椭圆。 椭圆的性质椭圆的性质( (方位、长短轴、左右旋方位、长短轴、左右旋 ) )在在 A1 、A2确定之后确定之后, ,主要决定于主要决定于 = 20 - 10。4. 相互垂直的简谐振动的合成相互垂直的简谐振动的合成36(1) 20- 10 0 0, , 两个分振动同相位,得两个分振动同相位,得xAAy12在任一时刻离开坐标原点位移为:在任一时刻离开坐标原点位移为:)cos(2221tAAs(2) 20- 10 , 两个分运动反相位,得两个分运动反相位,得xAAy1

27、2几种特殊情况:几种特殊情况:)(sin)cos(210202102021222212AyAxAyAx37(3) 20- 10 /2,得,得1222212AyAx(4) 20- 10 3/2,仍然得,仍然得1222212AyAx这是坐标轴为主轴的椭圆,这是坐标轴为主轴的椭圆,质点的轨迹是顺时针旋转。质点的轨迹是顺时针旋转。与与(3)(3)相同,只是质点的轨相同,只是质点的轨迹沿逆时针旋转。迹沿逆时针旋转。38几种特殊情况几种特殊情况10200243452347439方向垂直的不同频率的简谐振动的合成方向垂直的不同频率的简谐振动的合成两分振动频率相差很小两分振动频率相差很小 可看作两频率相等而可

28、看作两频率相等而 随随t 缓慢变化,合运动轨迹将按缓慢变化,合运动轨迹将按上页图依次缓慢变化上页图依次缓慢变化 轨迹称为李萨如图形轨迹称为李萨如图形两振动的频率成整数比两振动的频率成整数比t )(120,42:3:1020yx40无阻尼自由振动无阻尼自由振动 物体在弹性力或准弹性力作用下产生的简谐运动称无物体在弹性力或准弹性力作用下产生的简谐运动称无阻尼自由振动。阻尼自由振动。阻尼振动阻尼振动 物体在弹性力(或准弹性力)和物体在弹性力(或准弹性力)和阻力阻力作用下产生的运作用下产生的运动称阻尼振动。动称阻尼振动。4.5 阻尼振动阻尼振动 受迫振动受迫振动 共振共振阻尼振动的种类:阻尼振动的种类

29、: 在阻尼振动中,振动系统所具有的能量将在振动过在阻尼振动中,振动系统所具有的能量将在振动过程中逐渐减少。能量损失的原因通常有两种:程中逐渐减少。能量损失的原因通常有两种: 一种是由于介质对振一种是由于介质对振动物体的摩擦阻力,使振动物体的摩擦阻力,使振动系统的能量动系统的能量逐渐变为热逐渐变为热运动的能量运动的能量而造成能量损而造成能量损失。这称失。这称摩擦阻尼摩擦阻尼。 另一种是由于振动物体引起另一种是由于振动物体引起邻近质点振动,使振动系统的能邻近质点振动,使振动系统的能量逐渐向四周辐射出去,量逐渐向四周辐射出去,转变为转变为波动的能量波动的能量,而造成系统能量损,而造成系统能量损失。这

30、称失。这称辐射阻尼辐射阻尼。41阻尼振动阻尼振动dtdxvfr弹性力和上述阻力作用下的微分方程:弹性力和上述阻力作用下的微分方程:在流体在流体(液体、气体液体、气体)中运动的物体,当物体速度较小时,中运动的物体,当物体速度较小时,阻力阻力 速度,速度, :阻力系数。:阻力系数。txkxtxmdddd22m2;20mk令:令:称称 0 为振动系统的固有角频率,称为振动系统的固有角频率,称 为阻尼因子为阻尼因子022022xdtdxdtxd42(1) 2 02 阻尼较小时阻尼较小时,此方程的解此方程的解:220)cos()(0tAetxt这种情况称为这种情况称为欠阻尼欠阻尼022022xdtdxd

31、txd由初始条件决定由初始条件决定A和初相位和初相位 0, ,设设000dd,)0(,0vttxxxt即有即有: 00000cossincosAAAxv,)(220020 xxAv0000 xxtgv43欠阻尼下欠阻尼下1.振幅特点振幅特点振幅:振幅:A(t) = Ae- t)cos()(0tAetxt振幅随振幅随 t 衰减。衰减。 2.周期特点周期特点严格讲,严格讲,阻尼振动不阻尼振动不是周期性振动是周期性振动( (更不是更不是简谐振动简谐振动) ),因为位移,因为位移x(t)不是不是t 的周期函数。的周期函数。但阻尼振动有某种但阻尼振动有某种重复性。重复性。202 )2(阻尼较大时,方程的解:阻尼较大时,方程的解:tteetxCC)(2)(1202202)(其中其中C1,C2是积分常数,由初始条件是积分常数,由初始条件来决定,这种情况称为来决定,这种情况称为过阻尼过阻尼。无振动发生无振动发生44tetCCtx)()(21(3)如果如果 2= 02 方程的解:方程的解:无振动发生无振动发生C1,C2是积分常数,由初始条件来决是积分常数,由初始条件来决定,这种情况称为定,这种情况称为临界阻尼临界阻尼。 2 = 02( (临界阻尼临界阻尼) ) 情形下情形下:

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论