




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第十一章 无穷级数(一)1解:,(),原级数发散。2解:,(),原级数收敛且和为。3解:,(),原级数收敛且和为。4解:,由比值判别法知原级数发散。5解:,由比值判别法知,原级数收敛。6解:,原级数发散。7解:,而发散,由比较判别法知原级数发散。8解:,由比值判别法知,原级数收敛。9解:,由比值判别法知,原级数收敛。10解:,而,故,由根值判别法知,原级数收敛。11解:,由正项级数的比值判别可知,此级数收敛,故原级数绝对收敛。12解:,而发散,故发散。因此原级数非绝对收敛,又,显然,且,故由莱布尼兹判别法知原级数条件收敛。13解:,原级数发散。14解:此为交错级数,()而级数发散,故发散,即原
2、级数非绝对收敛,显然单调递减且趋向于零,故原级数条件收敛。15解:,当时,级数为发散,当时,级数为收敛。故原级数的收敛区间为。16解:,收敛区间为。17解:,。18解:,。故当,即时收敛,当或时发散,当时,级数为,收敛;当时,级数为,发散。故收敛区间为。19解:,当时,即时收敛,当,即或时发散,。当时原级数为,发散,故收敛区间为。20解:,当时,原级数,发散。故收敛区间为。21解:设,。22解:设,则,即,。23解:,。24解:,。25解:,。26解:,即27解:为偶函数,令,得,且在上连续,。28解:由于是奇函数,故,。29解:,时,。时,所以除上均成立。30解:1)正弦级数,注意到,作奇延
3、拓,使在上恒有。再将周期延拓得,是一个以为周期的连续函数,计算付氏系数如下:,(),.2)余弦函数作偶延拓设,使在上恒有。再将周期延拓得,是一个以为周期的连续函数,计算付氏系数如下:,.(二)1解:, ,原级数收敛且和为。2解:,原级数收敛且和为。3解:,原级数收敛且和为。4解:,由比值判别法知原级数收敛。5解:,由根值判别法知原级数收敛。6解:当充分大时有,而,故,由根值判别法知原级数收敛。7解:,当,即 时,原级数收敛;,即 ,原级数发散,当时不定。8解:当时,级数发散。 当时,(),而收敛,级数发散。9解:,收敛,由比较判别法知级数收敛。10解:,故也发散,故也非条件收敛。11解:,而发
4、散,故级数发散,即原级数非绝对收敛,原级数为交错级数,显然数列单调递减且收敛于零,故由莱布尼兹判别法知,原级数条件收敛。12解:,而发散,发散,即原级数非绝对收敛。记原级数为为交错级数,又,即,故由莱布尼兹判别法知原级数收敛,故原级数条件收敛。13解:,故对,原级数收敛,所以收敛半径为,收敛区间为。14,当时,原级数发散,故收敛区间为,其中。15解:,当,即时,原级数收敛,当,即或时,原级数发散,当,原级数收敛,当时原级数也收敛。故原级数收敛半径为2,收敛区间为。16解:,当,即,原级数收敛。当时,原级数收敛,当时,原级数发散。故原级数的收敛区间为。17解:,但,故有,。18解:,而,。19解
5、:,故,。20证明:考虑级数,逐项微分得:,。,取,得。21解:, 。,。22解:,()。23解:,。25解:,。由于对,有,所以。因此 以周期的周期函数,并且显然只有当,时是及 第一类间断点,所以符合狄利克雷收敛定理的条件,故付氏级数在处处收敛, ,有。26解:奇函数,所以。所以,除均成立,()。27解:又函数展成正弦级数为,又展开成余弦级数为,。(三)1解:,故原级数收敛,且和为。2证:,由比较判别法知原正项级数收敛。3解:,由比值判别法知,原级数发散。4解:考虑函数,由得,易知时的最大值,所以当地,但为收敛的几何级数,原级数也收敛。5解:,有;而当时,有,当时,而级九可判别其是收敛的,原级数收敛。6解:因为已知级数 条件收敛的级数。设其部分和数极限为,则有,而级数,取其前项,其和与的部分和相等且为,当时,故原级数收敛且和为。7解:,当,即时,收敛;当时发散。故,当时,级数为发散,故原级数收敛域为。8解:,由于,而当,故;当时,原级数为,由于通项不以零为极限,故发散。所以原级数的收敛域为。9解:当时,级数收敛。设,则,两边积分得:,();再积分一次,();,即原级数的和。10解:,因为当时,又当时,故展开式对所有的均成立,在展开式中令,得。11解:,(),故当,即当时级数收敛,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025中级会计实务预习知识考点:合同收入确认
- 2025兼职国庆节临时工合同范文
- 2025年房地产经纪人之业务操作过关检测试卷B卷附答案
- 2025年执业药师之中药学专业一题库练习试卷B卷附答案
- 2025办公室装修设计合同范本2
- 林业机械节能减排技术考核试卷
- 肥料在农业产业链优化中的地位考核试卷
- 航空航天器星载红外探测器技术考核试卷
- 石棉制品在户外烧烤设备的防火考核试卷
- 生物制药的药物晶体工程考核试卷
- (广东二模)2025年广东省高三高考模拟测试(二)语文试卷(含答案解析)
- SL631水利水电工程单元工程施工质量验收标准第3部分:地基处理与基础工程
- 新22J01 工程做法图集
- GB/T 5013.5-2008额定电压450/750V及以下橡皮绝缘电缆第5部分:电梯电缆
- GB/T 26519.1-2021工业过硫酸盐第1部分:工业过硫酸钠
- GB/T 2440-2017尿素
- GB/T 17166-2019能源审计技术通则
- 充电设施安全风险辨识清单
- 钙与维生素D的补充教案课件
- 中国胸痛中心建设流程及认证标准解读课件
- DB44-T 1661-2021《河道管理范围内建设项目技术规程》-(高清现行)
评论
0/150
提交评论