




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、等值计算公式的应用1. 预付年金的等值计算【例1】:某人每年年初存入银行5000元,年利率为10,8年后本利和是多少?解: 查教材P.298的复利系数表知,该系数为11.4359【例2】:某公司租一仓库,租期5年,每年年初需付租金12000元,贴现率为8,问该公司现在应筹集多少资金?解法1:解法2:解法3: 2. 延期年金的等值计算【例3】:设利率为10,现存入多少钱,才能正好从第四年到第八年的每年年末等额提取2万元? 解:【例4】:若利率为6%,现存入多少可使今后30年每6年末提取2000元?解:P2000(A/F,6%,6)(P/A,6%,30) 3947.73. 永续年金的等值计算【例5
2、】:某地方政府一次性投入5000万元建一条地方公路,年维护费为150万元,折现率为10,求现值。解:该公路可按无限寿命考虑,年维护费为等额年金,可利用年金现值公式求当n时的极限来解决。4. 求解未知的i【例6】:15年前,某企业投资10000元建厂,现拟卖出该厂得25000元,这10000元的收益率是多少?解法1:F=P(F/P,i,15) (F/P,i,15)=2.5 iF/P i F/P i F/P 6%2.397 2.5 8% 3.172解法:6. 计息周期小于资金收付周期的等值计算【例7】:每半年存款1000元,年利率8%,每季计息一次,复利计息。问五年末存款金额为多少?解法1:按收付
3、周期实际利率计算半年期实际利率ieff半(18%4)214.04%F1000(F/A,4.04%,2×5)1000×12.02912029元解法2:按计息周期利率,且把每一次收付看作一次支付来计算F1000(18%4)181000(18%4)16100012028.4元解法3:按计息周期利率,且把每一次收付变为等值的计息周期末的等额年金来计算A1000(AF,2,2)495元F495(FA,2,20)12028.5元7.计息周期大于资金收付周期的等值计算不计息。在计息期内收付不计息,计息期内支出计入期初,收益计入期末。单利计息。在计息期内的收付均按单利计复利计息【例】某人每
4、月末存款100元,年利率8%,每季计息一次,复利计息,计息期内利息按复利计算。问一年末存款金额为多少?解:计息期利率(季度实际利率)i季8/42计算季度名义利率: i季=(1r季/3)3=2%r季=1.9868% r月= r季/3=0.6623%F=100(F/A, r月,12)=1244.69【例】若某人第1年支付一笔10000元的保险金,之后9年内每年少支付1000元,若10年内采用等额支付的形式,则等额支付款为多少时等价于原保险计划?年利率为%。解:A=10000-1000(A/G,8,10) =10000-1000*3.8712 =6128.4元1.计息周期等于收付周期计息周期等于支付
5、周期时,有效利率与名义利率相同,可以利用等值计算的基本公式直接计算。 例5.12 年利率为12%,每半年计息一次,从现在起,连续三年,每半年为100元的等额支付,问与其等值的第0年的现值为多大? 解 每计息期的利率 2.计息周期小于收付周期(1)按计息周期计算 例5.13 按年利率12%,每季度计息一次,从现在起连续3年的等额年末借款为1000元,问与其等值的第3年年末的借款金额为多大? 解 其现金流量如图5.7所示 取一个循环周期,使这个周期的年末收付转变成等值的计息期末的等额收付系列,其现金流量见图5.8。 经过转变后,计息期和收付期完全重合,可直接利用利息公式进行计算。(2)按收付周期计
6、算 例5.14 仍以例5.13题为例,先求出收付期的有效利率,本例收付期为一年,然后以一年为基础进行计算。解 年有效利率是 现,所以使用“内插法”, 3.计息周期大于支付周期 由于计息期内有不同时刻的支付,通常规定存款必须存满一个计息周期时才计利息,即在计息周期间存人的款项在该期不计算利息,要在下一期才计算利息。因此,原财务活动的现金流量图应按以下原则进行整理:相对于投资方来说,计息期的存款放在期末,计算期的提款放在期初,计算期分界点处的支付保持不变。 例5.15 现金流量图如图5.9所示,年利率为12%,每季度计息1次,求年末终值F为多少?解 按上述原则进行整理,得到等值的现金流量图如图5.
7、10所示。根据整理过的现金流量图求得终值=112.36元5.5.4用“线性内插法”计算未知利率和年数1、计算未知利率在等值计算时,会遇到这种情况:现金流量P、F、A以及计算期n均为已知,收益率i待求。这时,可以借助查复利表,用“线性内插法”近似求出i。在一般情况下,我们可以由计算求出未知利率i的系数f0,通过复利系数表查出与f0上下最接近的系数f1和f2以及对应的i1和i2,如图5.11所示。求i的计算式为: 例5.16 已知现在投资300万元,9年后可以一次获得525万元。求利率i为多少?解:从复利系数表上查到,当n=9时,1.750落在6%和7%之间。从6%的位置查到1.689,从7%的位
8、置上查到1.838。用“直线内插法可得:计算表明,利率i为6.41%。2、计算未知年数在等值计算时,也会遇到这种情况:现金流量P、F、A以及收益率i均为已知,投资回收期n待求。这时,应用上面计算未知收益率的“直线内插法”,同样可近似求出n。例5.17 某企业准备利用外资贷款200万元建一工程,第三年投产,投产后每年净收益40万元,若年收益率为10%,问投产后多少年能够归还200万元贷款的本息。解:(1)画出现金流量图 (2)为使方案的计算能够利用公式,将投产的第二年末(第三年初)作为基期,计算P1: (3)计算投产后的偿还期在i=10%的复利系数表上,6.05落在第9和第10年之间。 即投产后
9、的9.76年能够全部还清贷款。例:某工厂向银行借款1000万元,计划在5年内还清本息,年利率为10%,现有4种偿还方式可供选择,即:方案1:每年末还本200万元及当年利息,分5年还清。方案2:前4年每年末还本年利息,第5年末还本及本年利息 。方案3:前3年不归还,第4年末、第5年末各还767万元。方案4:前4年不归还,第5年末一次还清1610万元。试选择偿还方式。解:P1 = -300/(110)280 /(110) 2 + 260/(110)3+240 /(110)4 +220 /(110)5 = -1000 (静态资金:1300)P2 = 100(1+10%)5 -1/0.1(1+10%)
10、5+ 1000/(1+10%) 5 =-1000 (静态资金:1500) P3 = -767/(1+10%)4-767/(1+10%) 5 = -1000 (静态资金:1534)P4 = -1610/(1+10%)5 = -1000 (静态资金:1610) 解: 方案1: 0 1 2 3 4 5 方案2: 4 3.2 3.2 3.2 3.2 3.220×0.8P2=20×0.816 P2> P1选择一次付款方式。 0 1 2 3 4 5分析: 若现有16万元,选择分期付款方式是否合适? 当年利率增加时,会倾向于选择哪一个方案? 当年利率为多少时才会选择分期付款方式?2
11、)当年利率增加时,会倾向于选择哪一个方案? 年利率 P1值 倾向于选择分期付款方案3)当年利率为多少时才会选择分期付款方式? P1 = 4+3.2(P/A,i,5) = P2 = 16 由计算可得 i = 10.4% 当年利率 < 10.4%, 选择一次付款方式, 当年利率 > 10.4%, 选择分期付款方式。 本章小结资金的时间价值理论和现金流量的计算方法是工程技术经济学的理论基础和进行有效的工程经济分析的工具。本章是全书的重点和难点内容之一,通过学习,要求大家在弄懂基本知识和理论的条件下,能够正确图示方案的现金流量;能够应用复利表和7个基本复利公式进行复利计算;同时,掌握名义利
12、率和实际利率的换算方法,能够针对不同计息等情况进行等值计算。对上述知识的融会贯通和要求的达到需要进行一定量的反复计算和训练。思考与练习1.向银行借款100元,借期为10年。试分别用8%单利和8%复利计算这笔借款第10年末的本利和。2.某人在银行存款1,000元。一年后可得到本利和1,120元。问这笔存款的利息为多少?利率又是多少?3.某企业向银行贷款,第一年初借入10万元,第三年初借入20万,利率为10%。第四年末偿还25万元,并打算第五年末一次还清。试计算第五年末应偿还多少?要求画出从借款人(企业)的角度出发的现金流量图和以贷款人(银行)的角度出发的现金流量图。4. 下列一次支付的终值F为多
13、少?(1)年利率10%,存款1,000元,存期3年;(2)年利率12%,存款1,000元,存期6年;(3)年利率20%,投资20万元,5年一次回收。5. 下列期终一次支付的现值为多少?(1)年利率5%,第5年末5000元;(2)年利率15%,第20年末的1,000元;(3)年利率10%,第10年末的1,000元。6. 下列等额支付的终值为多少?(1)年利率8%,每年年末存入银行100元, 连续存款10年。(2)年利率12%,每年年末存入银行250元, 连续存款20年。7. 下列等额支付的现值为多少?(1)年利率6%, 每年年末支付100元,连续支付10年。(2)年利率10%,每年年末支付3,0
14、00元, 连续支付5年。8. 下列终值的等额支付为多少?(1)年利率8%, 每年年末支付一次, 连续支付10年, 10年末积累金额10,000元。(2)年利率10%,每年年末支付一次, 连续支付8年, 8年末积累金额10,000元。9. 下列现值的等额支付为多少?(1)年利率5%,借款1,000元, 计划借款后的第一年年末开始偿还,每年偿还一次,分四年还清。(2)年利率8%,借款40,000万, 借款后第一年年末开始偿还, 每年末偿还一次,分20年还清。10. 设第一年年末存款4,000元,以后9年每年递增存款100元, 年利率8%, 求等值的年末等额支付A为多少?11. 设第一年年末贷款10
15、,000元,以后4年每年递减贷款2,000元,年利率10%,求第5年年末的终值为多少?12. 某企业计划五年后更新机械设备, 共需20万元, 打算自筹资金来满足到时的需要。银行存款的年利率为8%, 若现在一次存入, 需存多少金额? 若分五年每年年末等额存入, 每年需存入多少金额?13. 建设银行贷款给某投资者。年利率为5%,第一年初贷给3,000万元,第二年初贷给2,000万元,该投资者第三年末开始用盈利偿还贷款, 按协议至第十年末还清。问该投资者每年末应等额偿还多少?14. 某建筑企业七年前用3,500元购买了一台机械, 每年用此机械获得收益为750元, 在第一年时维护费为100元, 以后每
16、年递增维护费20元。该单位打算现在(第七年末)转让出售, 问:若年利率为10%,最低售价应为多少?15 . 若年利率为8%, 每月计息一次, 现在存款100元, 10年后可获本利和为多少?16. 若年利率为12%, 按半年计息, 每年末存款100元, 5年后可获本利和为多少?17. 某建筑企业购买了一台机械, 估计能使用20年, 每4年要大修理一次, 每次大修费用为1,000元, 现在应存入银行多少钱足以支付20年寿命期间的大修费支出。设年利率为12%, 每季计息一次。18. 某企业采用每月月末支付300元的分期付款方式购买一台价值6,000元的设备, 共分24个月付完。问名义利率是多少?19. 如果现在投资1,000元, 10年后可一次获得2,000元,问利率为多少?7.14%20. 如果第一年年初投资10,000元, 从第一年末起六年内每年年末可获利3,000元, 问这项投资的利率为多少?19.91%21. 利率10%时, 现在的100元, 多少年后才成为200元。7.2622. 某企业一年利率8%存入银行50,000元,用以支付每年年末的设备维修费。设每年末支付的维修费为8,000元, 问该存款能够支付多少年?9.01,9.0423. 试用线性内插法求下列系数值:(1) (P/A,8.2%,10) 6.6536(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 法律文书电子签管理员考试试卷及答案
- 外卖运营专家笔试试题及答案
- 2025年桨扇发动机合作协议书
- 2025年细菌类诊断抗原项目建议书
- 基于Qt的探测器寿命试验系统设计及实践
- 2025年温州瑞安市中小学招聘事业编制教师考试试题【答案】
- 2025年十堰市茅箭区教育局所属学校招聘教师考试试题【答案】
- 劳动保障局副局长述职报告
- 消防员个人工作自我鉴定范文
- 湘艺七年级下册音乐教案
- 高压氧舱测试题库及答案
- T/SHPTA 032.2-2022500 kV及以下海上风电交流海缆用可交联聚乙烯电缆料第2部分:半导电屏蔽料
- 2024年江西财经大学辅导员考试真题
- 家校社协同育人的实践策略研究
- GB/T 30425-2025高压直流输电换流阀水冷却设备
- 河南省洛阳市东方第二中学2025届八下物理期末统考试题含解析
- 2025春季学期国家开放大学本科《国际私法》一平台在线形考(形考任务1至5)试题及答案
- 风电运维安全培训内容课件
- 保密人员面试题及答案
- 体育设备采购项目方案投标文件(技术方案)
- 烘焙技巧培训课程行业深度调研及发展战略咨询报告
评论
0/150
提交评论