



下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、立体几何(几何法)二面角(模型二)例1(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD版)如图,AB是圆的直径,PA垂直圆所在的平面,C是圆上的点.(I)求证:(II)【答案】解: (1)证明:由AB是圆的直径,得ACBC.由PA平面ABC,BC平面ABC,得PABC.又PAACA,PA平面PAC,AC平面PAC,所以BC平面PAC.因为BC平面PBC,所以平面PBC平面PAC.(2)方法一:过C作CMAP,则CM平面ABC.如图,以点C为坐标原点,分别以直线CB,CA,CM为x轴、y轴、z轴建立空间直角坐标系15因为AB2,AC1,所以BC.因为PA1,所以A(0,1,0),
2、B(,0,0),P(0,1,1)故(,0,0),(0,1,1)设平面BCP的法向量为(x,y,z)则所以不妨令y1,则1(0,1,1)因为(0,0,1),(,1,0),设平面ABP的法向量为2(x,y,z),则所以不妨令x1,2(1,0)于是cos1,2,所以由题意可知二面角CPBA的余弦值为.解法二:过C作CMAB于M.图16因为PA平面ABC,CM平面ABC,所以PACM,故CM平面PAB.过M作MNPB于N,联结NC.由三垂线定理得CNPB.所以CNM为二面角CPBA的平面角在RtABC中,由AB2,AC1,得BC,CM,BM.在RtPAB中,由AB2,PA1,得PB.因为RtBNMRtBAP,所以,故MN.又在RtCNM中,CN,故cosCNM.所以二面角CPBA的余弦值为.例2(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD版)如图,在四面体中,平面,.是的中点, 是的中点,点在线段上,且.(1)证明:平面;(2)若二面角的大小为,求的大小.ABCDPQM(第20题图)【答案】解:证明()方法一:如图6,取的中点,且是中点,所以.因为是中点,所以;又因为()且,所以,所以面面,且面,所以面; 方法二:如图7所示,取中点,且是中点,所以;取的三等分点,使,且,所以,所以,且,所以面; ()如图8所示,由已知得到面面,过作于,所以
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工程项目合同风险管理与应对策略
- 城市景观绿化与美化施工方案
- BIM与建筑设施管理的深度融合方案
- 年产智能手机主板1.6亿件项目可行性研究报告模板-立项拿地
- 照明系统运维管理方案
- 招标师考试试题及答案
- 系统集成项目管理工程师技能试题及答案
- 中学生物理竞赛交流电试题及参考答案
- 2025常德出租车考试真题及答案
- 2025年劳动防护用品使用试题及答案(安全教育培训)
- 社交APP用户社群运营创新创业项目商业计划书
- 2025年互联网医疗市场份额动态趋势研究报告
- 2025至2030铝合金行业市场深度分析及竞争格局与行业项目调研及市场前景预测评估报告
- 医院中医科常见病症诊疗规范
- 2025广东广州市白云区民政局招聘窗口服务岗政府雇员1人笔试备考试题及答案解析
- 《电子商务概论》(第6版) 教案 第11、12章 农村电商;跨境电商
- 2025年电气工程及其自动化专业考试试卷及答案
- 车辆改装施工方案模板
- 到梦空间使用讲解
- 大象牙膏教学课件
- 国家开放大学《药物治疗学(本)》形考作业1-4参考答案
评论
0/150
提交评论