




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、电磁场与电磁波复习资料填空题1梯度的物理意义为描述标量场在某点的最大变化率及其变化最大的方向,等值面、方向导数与梯度的关系是空间某一点的梯度垂直过该点的等值面;梯度在某方向上的投影即为方向导数。2用方向余弦写出直角坐标系中单位矢量的表达式3某二维标量函数,则其梯度=梯度在正方向的投影为-1。4自由空间中一点电荷位于,场点位于,则点电荷的位置矢量为,场点的位置矢量为 ,点电荷到场点的距离矢量为 。5矢量场,其散度为3 ,矢量场在点处的大小为3。6直角坐标系下方向导数的数学表达式梯度的表达式为任意标量的梯度的旋度恒为0 ,任意矢量的旋度的散度恒为0 。7矢量散度在直角坐标系的表达式为 在圆柱坐标系
2、的表达式为在球坐标系的表达式为8矢量微分运算符在直角坐标系、圆柱坐标系和球坐标系的表达式分别为 。9高斯散度定理数学表达式为 ,斯托克斯定理数学表达式为 。10矢量通量的定义为:P16页1.4.2节第三段第一句;散度的定义为P17页1.4.3节第二段即定义;环流的定义为矢量场对于闭合曲线C 的环流定义为该矢量对闭合曲线C 的线积分。旋度的定义为矢量场在M点处的旋度为一矢量,其数值为M点的环流面密度最大值,其方向为取得环量密度最大值时面积元的法线方向11矢量的旋度在直角坐标系下的表达式为 。12矢量场为无旋场的条件为,该矢量场是由 散度 源所产生。13矢量场为无散场的条件为,该矢量场是由漩涡 源
3、所产生。14电流连续性方程的微分形式为 。15在国际单位制中,电场强度的单位是V/m(伏/米),电位移的单位是C/m²,磁场强度的单位是A/m ,磁感应强度的单位是特斯拉,简称特(T),介电常数的单位是法拉/米(F/m); ,磁导率的单位是亨利每米(H /m),电导率的单位是西门子/米(S/m)。16在自由空间中,点电荷产生的电场强度与其电荷量成正比,与场点到源点的距离平方成反比。17从宏观效应来看,物质对电磁场的响应可分为极化 ,磁化 ,传导三种现象。18线性且各向同性媒质的本构关系方程是: , ,。19麦克斯韦方程组的微分形式是: , , , 。20麦克斯韦方程组的积分形式是:
4、, , , 。21求解时变电磁场或解释一切宏观电磁现象的理论依据是麦克斯韦方程组。22在两种媒质分界面的两侧,电场的切向分量0 ;磁场的法向分量0 ;电流密度的法向分量0 。23一般介质分界面的边界条件分别为, ,24两种理想介质分界面的边界条件分别是141516 ,理想介质与理想导体分界面的边界条件分别是2.7.9101112。25静态场指不随时间变化的场 ,静电场 、恒定电场 、恒定磁场;分别是由静止电荷、在导电媒质中恒定运动电荷 、恒定电流产生的。26静电场的基本方程积分形式为: ,;相应的边界条件为: , 。微分形式为: , 。27恒定电场的基本方程积分形式为: , ;相应的边界条件为
5、: , 。微分形式为: , 。28恒定磁场的基本方程积分形式为: , ;相应的边界条件为: , 。微分形式为: , 。29理想导体(媒质2)与空气(媒质1)分界面上,电磁场的边界条件为:10111230电位满足的泊松方程为;在两种纯介质分界面上电位满足的边界条件为:3.1.19 , 。31在静电场中,电场强度与电位的微分关系为 ,积分关系为,电场强度的方向为高 电位指向低 电位。32对于时变电磁场,磁场与矢量位的关系为 ,电场强度与标量位的关系为 。33在磁场中,定义矢量位函数的前提条件是 。的散度定义为 ,这个条件叫洛仑兹条件。34一般介质中电磁波的波动方程为 , 。均匀平面波的波动方程为5
6、.1.12 ,5.1.34 。35标量位函数的达朗贝尔方程为 ,矢量位函数的达朗贝尔方程为 。36时谐电磁场的亥姆霍兹方程组为公式37空气中的电场强度,则其位移电流密度 。38磁场强度,其复数形式为。39均匀平面电磁波在真空中的传播速度,则在的电介质中传播时,传播速度为m/s 。40均匀平面波在理想介质中传播时,的相位与的相位同相位 。41沿Z轴传播的平面电磁波的复数表示式为:42电磁波的极化是在空间任意给定点上,合成波电场强度矢量的大小和方向都可能随时间变化的现象。其三种基本形式分别为直线极化 、圆极化 、椭圆极化计算题:第一章教材习题:1.1;1.11;1.12;1.16第二章教材例题:;
7、教材习题:2.9;2.16;2.24;2.29第三章教材例题:;教材习题:3.7;3.11;3.13;3.14;3.15;3.17;3.19第四章教材例题:;第五章教材例题:教材习题:5.1;5.3;5.5;5.6;5.10;5.11;5.12;1矢量,求(1)(2)解:(1)(2)2标量场,在点处(1)求出其梯度的大小(2)求梯度的方向解:(1)梯度的大小: (2)梯度的方向3矢量函数,试求(1)(2)解:(1)(2) 4某矢量函数为(1)试求其散度(2)判断此矢量函数是否可能是某区域的电场强度(静电场)?解:(1)(2)可见,该矢量函数为无旋场,故它可能是某区域的电场强度。 5按要求完成下
8、列题目(1)判断矢量函数是否是某区域的磁通量密度?(2)如果是,求相应的电流分布。解:(1)根据散度的表达式将矢量函数代入,显然有故:该矢量函数为某区域的磁通量密度。(2)电流分布为:6矢量函数,试求(1)(2)若在平面上有一边长为2的正方形,且正方形的中心在坐标原点,试求该矢量穿过此正方形的通量。解: (1) (2) 平面上面元矢量为 穿过此正方形的通量为7放在坐标原点的点电荷在空间任一点处产生的电场强度表达式为(1)求出电力线方程;(2)画出电力线。解:(1)由力线方程得对上式积分得式中,为任意常数。(2)电力线如图所示。8一个点电荷位于处,另一个点电荷位于处,其中。求(1) 求出空间任一
9、点处电位的表达式;(2) 求出电场强度为零的点。解:(1)建立如图所示坐标空间任一点的电位其中,(2)根据分析可知,电场等于零的位置只能位于两电荷的连线上的的左侧,设位于处,则在此处电场强度的大小为令上式等于零得求得 9设无限长直线均匀分布有电荷,已知电荷密度为,求(1) 空间任一点处的电场强度;(2) 画出其电力线,并标出其方向。解(1)由电荷的分布对称性可知,离导线等距离处的电场大小处处相等,方向为沿柱面径向,在底面半径为长度为的柱体表面使用高斯定理得:可得空间任一点处的电场强度为:(2)其电力线如图所示10真空中均匀带电球体,其电荷密度为,半径为,试求(1) 球内任一点的电位移矢量(2)
10、 球外任一点的电场强度解:(1)作半径为的高斯球面,在高斯球面上电位移矢量的大小不变, 根据高斯定理,有(2)当时,作半径为的高斯球面,根据高斯定理,有电场强度为11设真空中无限长直导线电流为,沿轴放置,如图所示。求(1)空间各处的磁感应强度(2)画出其磁力线,并标出其方向。解:(1)由电流的柱对称性可知,柱内离轴心任一点处的磁场强度大小处处相等,方向为沿柱面切向,由安培环路定律: 得: 于是空间各处的磁感应强度为: (2) 磁力线如图所示 方向:与导线电流方向成右手螺旋。 12设半径为的无限长圆柱内均匀地流动着强度为的电流,设柱外为自由空间,求(1) 柱内离轴心任一点处的磁场强度;(2) 柱
11、外离轴心任一点处的磁感应强度。解(1)由电流的柱对称性可知,柱内离轴心任一点处的磁场强度大小处处相等,方向为沿柱面切向,由安培环路定律:整理可得柱内离轴心任一点处的磁场强度 (2)柱外离轴心任一点处的磁感应强度也大小处处相等,方向为沿柱面切向,由安培环路定律:整理可得柱内离轴心任一点处的磁感应强度13真空中均匀带电球体,其电荷密度为,半径为,试求(1) 球内任一点的电位移矢量(2) 球外任一点的电场强度解:(1)作半径为的高斯球面,在高斯球面上电位移矢量的大小不变, 根据高斯定理,有(2)当时,作半径为的高斯球面,根据高斯定理,有电场强度为14电偶极子电量为,正、负电荷间距为,沿轴放置,中心位
12、于原点,求(1)求出空间任一点P处的电位表达式(2)画出其电力线。解:(1) 空间任一点P处的坐标为则该点处的电位为:其中,(2)电力线图如图所示 零电位面电力线15同轴线内导体半径为,外导体半径为,内、外导体间介质为空气,其间电压为(1)求处的电场强度(2)求处的电位移矢量解:(1) 导体内部没有电荷分布,故内导体内部处的电场强度处处为零。 (2)设单位长内导体表面电荷密度为,由电荷的分布对称性可知,离导线等距离处的电场大小处处相等,方向为沿柱面径向,在底面半径为长度为的柱体表面使用高斯定理得:可得任一点处的电场强度为:再由得任一点处的电位移矢量为:16无限长同轴电缆内导体半径为,外导体的内、外半径分别为和。电缆中有恒定电流流过(内导体上电流为、外导体上电流为反方向的),设内、外导体间为空气外导体间为空气,空气介电常数为,磁导率为,内外导体的相对介电常数为,相对磁导率为,试求:(1)求处的磁场强度及磁感应强度(2)求处的磁场强度及磁感应强度。解:(1)由电流的对称性可知,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 羽绒制品销售渠道整合与优化考核试卷
- 纺织品行业创新创业指导考核试卷
- 船舶改装工程技术规范与标准更新解读考核试卷
- 报纸的突发事件报道考核试卷
- 新能源汽车维护与故障诊断(微课版)教案 4.4.1空调不制冷故障诊断与排除;4.4.2空调不制热故障的诊断与排除
- 稀土金属压延加工过程中的监控与检测手段考核试卷
- 羊饲养的可持续发展模式探索考核试卷
- 航标用电缆与连接器制造考核试卷
- 煤气化技术的能源供需平衡研究考核试卷
- 珠海三中高一下学期期中考试语文试题
- 2025-2030创新药CRO行业竞争态势及未来投资趋势预测研究报告
- BS ISO 5675-2021 农业拖拉机和机械. 一般用快速液压接头
- 2024年甘肃白银希望职业技术学院招聘笔试真题
- 2025年高考历史答题技巧与答题模板专题08影响、作用类(答题模版)(学生版+解析)
- 韵达加盟合同协议
- 中小学五一节前安全教育班会课件
- 2025-2030中国药物递送系统行业市场深度分析及发展前景与投资研究报告
- 家装个人清包合同协议
- 《运动处方》课件-糖尿病人群运动处方案例
- 2025-2030全球及中国普拉提和瑜伽馆行业市场现状供需分析及市场深度研究发展前景及规划可行性分析研究报告
- 儿童卫生习惯的养成与学校教育的结合
评论
0/150
提交评论