电场与复合场讲义_第1页
电场与复合场讲义_第2页
电场与复合场讲义_第3页
电场与复合场讲义_第4页
电场与复合场讲义_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、带电粒子在复合场中的运动 v1速度选择器正交的匀强磁场和匀强电场组成速度选择器。带电粒子必须以唯一确定的速度(包括大小、方向)才能匀速(或者说沿直线)通过速度选择器。否则将发生偏转。这个速度的大小可以由洛伦兹力和电场力的平衡得出:qvB=Eq,。在本图中,速度方向必须向右。(1)这个结论与离子带何种电荷、电荷多少都无关。(2)若速度小于这一速度,电场力将大于洛伦兹力,带电粒子向电场力方向偏转,电场力做正功,动能将增大,洛伦兹力也将增大,粒子的轨迹既不是抛物线,也不是圆,而是一条复杂曲线;若大于这一速度,将向洛伦兹力方向偏转,电场力将做负功,动能将减小,洛伦兹力也将减小,轨迹是一条复杂曲线。ab

2、cov0【例1】 某带电粒子从图中速度选择器左端由中点O以速度v0向右射去,从右端中心a下方的b点以速度v1射出;若增大磁感应强度B,该粒子将打到a点上方的c点,且有ac=ab,则该粒子带_电;第二次射出时的速度为_。解:B增大后向上偏,说明洛伦兹力向上,所以为带正电。由于洛伦兹力总不做功,所以两次都是只有电场力做功,第一次为正功,第二次为负功,但功的绝对值相同。【例2】 如图所示,一个带电粒子两次以同样的垂直于场线的初速度v0分别穿越匀强电场区和匀强磁场区, 场区的宽度均为L偏转角度均为,求EB解:分别利用带电粒子的偏角公式。在电场中偏转:,在磁场中偏转:,由以上两式可得。可以证明:当偏转角

3、相同时,侧移必然不同(电场中侧移较大);当侧移相同时,偏转角必然不同(磁场中偏转角较大)。2回旋加速器回旋加速器是高考考查的的重点内容之一,但很多同学往往对这类问题似是而非,认识不深,甚至束手无策、,因此在学习过程中,尤其是高三复习过程中应引起重视。(1)有关物理学史知识和回旋加速器的基本结构和原理1932年美国物理学家应用了带电粒子在磁场中运动的特点发明了回旋加速器,其原理如图所示。A0处带正电的粒子源发出带正电的粒子以速度v0垂直进入匀强磁场,在磁场中匀速转动半个周期,到达A1时,在A1 A1/处造成向上的电场,粒子被加速,速率由v0增加到v1,然后粒子以v1在磁场中匀速转动半个周期,到达

4、A2/时,在A2/ A2处造成向下的电场,粒子又一次被加速,速率由v1增加到v2,如此继续下去,每当粒子经过A A/的交界面时都是它被加速,从而速度不断地增加。带电粒子在磁场中作匀速圆周运动的周期为,为达到不断加速的目的,只要在A A/上加上周期也为T的交变电压就可以了。即T电=实际应用中,回旋加速是用两个D形金属盒做外壳,两个D形金属盒分别充当交流电源的两极,同时金属盒对带电粒子可起到静电屏蔽作用,金属盒可以屏蔽外界电场,盒内电场很弱,这样才能保证粒子在盒内只受磁场力作用而做匀速圆周运动。(2)带电粒子在D形金属盒内运动的轨道半径是不等距分布的设粒子的质量为m,电荷量为q,两D形金属盒间的加

5、速电压为U,匀强磁场的磁感应强度为B,粒子第一次进入D形金属盒,被电场加速1次,以后每次进入D形金属盒都要被电场加速2次。粒子第n次进入D形金属盒时,已经被加速(2n-1)次。由动能定理得(2n1)qU=Mvn2。 第n次进入D形金属盒后,由牛顿第二定律得qvnB=m 由两式得n=同理可得第n+1次进入D形金属盒时的轨道半径rn+1=所以带电粒子在D形金属盒内任意两个相邻的圆形轨道半径之比为,可见带电粒子在D形金属盒内运动时,轨道是不等距分布的,越靠近D形金属盒的边缘,相邻两轨道的间距越小。(3)带电粒子在回旋加速器内运动,决定其最终能量的因素由于D形金属盒的大小一定,所以不管粒子的大小及带电

6、量如何,粒子最终从加速器内设出时应具有相同的旋转半径。由牛顿第二定律得qvnB=m和动量大小存在定量关系 m vn= 由两式得Ek n=可见,粒子获得的能量与回旋加速器的直径有关,直径越大,粒子获得的能量就越大。【例3】一个回旋加速器,当外加电场的频率一定时,可以把质子的速率加速到v,质子所能获得的能量为E,则:这一回旋加速器能把粒子加速到多大的速度?这一回旋加速器能把粒子加速到多大的能量?这一回旋加速器加速粒子的磁感应强度跟加速质子的磁感应强度之比为?解:由qvnB=m得 vn=由周期公式T电= 得知,在外加电场的频率一定时,为定值,结合式得=v。由式Ek n=及为定值得,在题设条件下,粒子

7、最终获得动能与粒子质量成正比。所以粒子获得的能量为4E。由周期公式T电= 得=21。(4)决定带电粒子在回旋加速器内运动时间长短的因素带电粒子在回旋加速器内运动时间长短,与带电粒子做匀速圆周运动的周期有关,同时还与带电粒在磁场中转动的圈数有关。设带电粒子在磁场中转动的圈数为n ,加速电压为U。因每加速一次粒子获得能量为qU,每圈有两次加速。结合Ek n=知,2nqU=,因此n=。所以带电粒子在回旋加速器内运动时间t =nT=.=。3带电微粒在重力、电场力、磁场力共同作用下的运动E B(1)带电微粒在三个场共同作用下做匀速圆周运动。必然是电场力和重力平衡,而洛伦兹力充当向心力。【例4】 一个带电

8、微粒在图示的正交匀强电场和匀强磁场中在竖直面内做匀速圆周运动。则该带电微粒必然带_,旋转方向为_。若已知圆半径为r,电场强度为E磁感应强度为B,则线速度为_。解:因为必须有电场力与重力平衡,所以必为负电;由左手定则得逆时针转动;再由EqmgNv afvmqvB Eq N fmg(2)与力学紧密结合的综合题,要认真分析受力情况和运动情况(包括速度和加速度)。必要时加以讨论。【例5】质量为m带电量为q的小球套在竖直放置的绝缘杆上,球与杆间的动摩擦因数为。匀强电场和匀强磁场的方向如图所示,电场强度为E,磁感应强度为B。小球由静止释放后沿杆下滑。设杆足够长,电场和磁场也足够大, 求运动过程中小球的最大

9、加速度和最大速度。解:不妨假设设小球带正电(带负电时电场力和洛伦兹力都将反向,结论相同)。刚释放时小球受重力、电场力、弹力、摩擦力作用,向下加速;开始运动后又受到洛伦兹力作用,弹力、摩擦力开始减小;当洛伦兹力等于电场力时加速度最大为g。随着v的增大,洛伦兹力大于电场力,弹力方向变为向右,且不断增大,摩擦力随着增大,加速度减小,当摩擦力和重力大小相等时,小球速度达到最大。若将磁场的方向反向,而其他因素都不变,则开始运动后洛伦兹力向右,弹力、摩擦力不断增大,加速度减小。所以开始的加速度最大为;摩擦力等于重力时速度最大,为。【例6】如图所示,两个共轴的圆筒形金属电极,外电极接地,其上均匀分布着平行于

10、轴线的四条狭缝a、b、c和d,外筒的外半径为r,在圆筒之外的足够大区域中有平行于轴线方向的均匀磁场,磁感强度的大小为B。在两极间加上电压,使两圆筒之间的区域内有沿半径向外的电场。一质量为、带电量为q的粒子,从紧靠内筒且正对狭缝a的S点出发,初速为零。如果该粒子经过一段时间的运动之后恰好又回到出发点S,则两电极之间的电压U应是多少?(不计重力,整个装置在真空中)解析:如图所示,带电粒子从S点出发,在两筒之间的电场作用下加速,沿径向穿过狭缝a而进入磁场区,在洛伦兹力作用下做匀速圆周运动。粒子再回到S点的条件是能沿径向穿过狭缝d.只要穿过了d,粒子就会在电场力作用下先减速,再反向加速,经d重新进入磁

11、场区,然后粒子以同样方式经过c、b,再回到S点。设粒子进入磁场区的速度大小为V,根据动能定理,有设粒子做匀速圆周运动的半径为R,由洛伦兹力公式和牛顿第二定律,有由前面分析可知,要回到S点,粒子从a到d必经过圆周,所以半径R必定等于筒的外半径r,即R=r.由以上各式解得;.【例7】如图所示,空间分布着有理想边界的匀强电场和匀强磁场。左侧匀强电场的场强大小为E、方向水平向右,电场宽度为L;中间区域匀强磁场的磁感应强度大小为B,方向垂直纸面向里。一个质量为m、电量为q、不计重力的带正电的粒子从电场的左边缘的O点由静止开始运动,穿过中间磁场区域进入右侧磁场区域后,又回到O点,然后重复上述运动过程。求:

12、(1)中间磁场区域的宽度d; (2)带电粒子从O点开始运动到第一次回到O点所用时间t.解析:(1)带电粒子在电场中加速,由动能定理,可得: 带电粒子在磁场中偏转,由牛顿第二定律,可得:由以上两式,可得。可见在两磁场区粒子运动半径相同,如图13所示,三段圆弧的圆心组成的三角形O1O2O3是等边三角形,其边长为2R。所以中间磁场区域的宽度为(2)在电场中,在中间磁场中运动时间在右侧磁场中运动时间,则粒子第一次回到O点的所用时间为。一、带电粒子在电场中的运动1.带电粒子在匀强电场中的加速tU0-U0oT/2 T 3T/2 2T一般情况下带电粒子所受的电场力远大于重力,所以可以认为只有电场力做功。由动

13、能定理W=qU=EK,此式与电场是否匀强无关,与带电粒子的运动性质、轨迹形状也无关。【例1】 如图所示,两平行金属板竖直放置,左极板接地,中间有小孔。右极板电势随时间变化的规律如图所示。电子原来静止在左极板小孔处。(不计重力作用)下列说法中正确的是A.从t=0时刻释放电子,电子将始终向右运动,直到打到右极板上B.从t=0时刻释放电子,电子可能在两板间振动C.从t=T/4时刻释放电子,电子可能在两板间振动,也可能打到右极板上D.从t=3T/8时刻释放电子,电子必将打到左极板上解:从t=0时刻释放电子,如果两板间距离足够大,电子将向右先匀加速T/2,接着匀减速T/2,速度减小到零后,又开始向右匀加

14、速T/2,接着匀减速T/2直到打在右极板上。电子不可能向左运动;如果两板间距离不够大,电子也始终向右运动,直到打到右极板上。从t=T/4时刻释放电子,如果两板间距离足够大,电子将向右先匀加速T/4,接着匀减速T/4,速度减小到零后,改为向左先匀加速T/4,接着匀减速T/4。即在两板间振动;如果两板间距离不够大,则电子在第一次向右运动过程中就有可能打在右极板上。从t=3T/8时刻释放电子,如果两板间距离不够大,电子将在第一次向右运动过程中就打在右极板上;如果第一次向右运动没有打在右极板上,那就一定会在第一次向左运动过程中打在左极板上。选ACU L dv0m,qyvt2.带电粒子在匀强电场中的偏转

15、质量为m电荷量为q的带电粒子以平行于极板的初速度v0射入长L板间距离为d的平行板电容器间,两板间电压为U,求射出时的侧移、偏转角和动能增量。(1)侧移:千万不要死记公式,要清楚物理过程。根据不同的已知条件,结论改用不同的表达形式(已知初速度、初动能、初动量或加速电压等)。(2)偏角:,注意到,说明穿出时刻的末速度的反向延长线与初速度延长线交点恰好在水平位移的中点。这一点和平抛运动的结论相同。穿越电场过程的动能增量:EK=Eqy (注意,一般来说不等于qU)o 0.1 0.2 0.3 0.4 0.5 3U0u0.06LL LU0yOt【例2】如图所示,热电子由阴极飞出时的初速忽略不计,电子发射装

16、置的加速电压为U0。电容器板长和板间距离均为L=10cm,下极板接地。电容器右端到荧光屏的距离也是L=10cm。在电容器两极板间接一交变电压,上极板的电势随时间变化的图象如左图。(每个电子穿过平行板的时间极短,可以认为电压是不变的)求:在t=0.06s时刻,电子打在荧光屏上的何处?荧光屏上有电子打到的区间有多长?屏上的亮点如何移动?解:由图知t=0.06s时刻偏转电压为1.8U0,可求得y = 0.45L= 4.5cm,打在屏上的点距O点13.5cm。电子的最大侧移为0.5L(偏转电压超过2.0U0,电子就打到极板上了),所以荧光屏上电子能打到的区间长为3L=30cm。屏上的亮点由下而上匀速上

17、升,间歇一段时间后又重复出现。3.带电物体在电场力和重力共同作用下的运动。当带电体的重力和电场力大小可以相比时,不能再将重力忽略不计。这时研究对象经常被称为“带电微粒”、“带电尘埃”、“带电小球”等等。这时的问题实际上变成一个力学问题,只是在考虑能量守恒的时候需要考虑到电势能的变化。-+OC【例3】 已知如图,水平放置的平行金属板间有匀强电场。一根长l的绝缘细绳一端固定在O点,另一端系有质量为m并带有一定电荷的小球。小球原来静止在C点。当给小球一个水平冲量后,它可以在竖直面内绕O点做匀速圆周运动。若将两板间的电压增大为原来的3倍,求:要使小球从C点开始在竖直面内绕O点做圆周运动,至少要给小球多

18、大的水平冲量?在这种情况下,在小球运动过程中细绳所受的最大拉力是多大?解:由已知,原来小球受到的电场力和重力大小相等,增大电压后电场力是重力的3倍。在C点,最小速度对应最小的向心力,这时细绳的拉力为零,合力为2mg,可求得速度为v=,因此给小球的最小冲量为I = m。在最高点D小球受到的拉力最大。从C到D对小球用动能定理:,在D点,解得F=12mg。OACBE【例4】 已知如图,匀强电场方向水平向右,场强E=1.5×106V/m,丝线长l=40cm,上端系于O点,下端系质量为m=1.0×104kg,带电量为q=+4.9×10-10C的小球,将小球从最低点A由静止释

19、放,求:(1)小球摆到最高点时丝线与竖直方向的夹角多大?(2)摆动过程中小球的最大速度是多大?解:(1)这是个“歪摆”。由已知电场力Fe=0.75G摆动到平衡位置时丝线与竖直方向成37°角,因此最大摆角为74°。(2)小球通过平衡位置时速度最大。由动能定理:1.25mg0.2l=mvB2/2,vB=1.4m/s。二、电容器1.电容器两个彼此绝缘又相隔很近的导体都可以看成一个电容器。2.电容器的电容电容是表示电容器容纳电荷本领的物理量,是由电容器本身的性质(导体大小、形状、相对位置及电介质)决定的。3.平行板电容器的电容平行板电容器的电容的决定式是: 4.两种不同变化K电容器

20、和电源连接如图,改变板间距离、改变正对面积或改变板间电解质材料,都会改变其电容,从而可能引起电容器两板间电场的变化。这里一定要分清两种常见的变化: (1)电键K保持闭合,则电容器两端的电压恒定(等于电源电动势),这种情况下带电量而(2)充电后断开K,保持电容器带电量Q恒定,这种情况下K【例5】 如图所示,在平行板电容器正中有一个带电微粒。K闭合时,该微粒恰好能保持静止。在保持K闭合;充电后将K断开;两种情况下,各用什么方法能使该带电微粒向上运动打到上极板?A.上移上极板M B.上移下极板N C.左移上极板M D.把下极板N接地 解:由上面的分析可知选B,选C。A【例6】 计算机键盘上的每一个按

21、键下面都有一个电容传感器。电容的计算公式是,其中常量=9.0×10-12Fm-1,S表示两金属片的正对面积,d表示两金属片间的距离。当某一键被按下时,d发生改变,引起电容器的电容发生改变,从而给电子线路发出相应的信号。已知两金属片的正对面积为50mm2,键未被按下时,两金属片间的距离为0.60mm。只要电容变化达0.25pF,电子线路就能发出相应的信号。那么为使按键得到反应,至少需要按下多大距离?解:先求得未按下时的电容C1=0.75pF,再由得和C2=1.00pF,得d=0.15mm。【例7】一平行板电容器充电后与电源断开,负极板接地,在两极板间有一正电荷(电量很小)固定在P点,如

22、图所示,以E表示两极板间的场强,U表示电容器的电压,W表示正电荷在P点的电势能。若保持负极板不动,将正极板移到图中虚线所示的位置,则()PAU变小,E不变BE变大,W变大CU变小,W不变DU不变,W不变解析:当平行板电容器充电后与电源断开时,对有关物理量变化的讨论,要注意板间场强的一个特点: ,即对于介质介电常数为的平行板电容器而言,两极间场强只与极板上单位面积的带电量成正比。带电量Q不变,两极间场强E保持不变,由于板间d距离减小,据可知,电容器的电压变小。由于场强E保持不变,因此,P点与接地的负极板即与地的电势差保持不变,即点P的电势保持不变,因此电荷在P点的电势能W保持不变。所以本题应选AC。电容式传感器在测量中有着重要的应用,因此在学复习中不可忽视。关键在于抓住所测物理量与电容器中电容的联系,问题就迎刃而解了。5. 电容器与恒定电流相联系在直流电路中,电容器的充电过程非常短暂,除充电瞬间以外,电容器都可以视为断路。应该理解的是:电容器与哪部分电路并联,电容器两端的电压就必然与那

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论