




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、.第2课时运用平均值不等式求最大小值1能利用平均值不等式求简单的最大小值重点2掌握建立不等式模型,解决实际问题中的最值难点根底·初探教材整理两个重要结论阅读教材P10P14,完成以下问题1x,y为正数,xyS,xyP,那么1假如P是定值,那么当且仅当xy时,S获得最小值2;2假如S是定值,那么当且仅当xy时,P获得最大值.2假设a,b,c均为正数,1假如abc是定值S,那么abc时,积abc有最大值;2假如积abc是定值P,那么当abc时, 和abc有最小值填空:1假设x>0时,x的最小值是_2当获得最小值时,x取_【解析】1x>0时,x2,故最小值为2.22,这时x0.
2、【答案】1220质疑·手记预习完成后,请将你的疑问记录,并与“小伙伴们讨论交流:疑问1: 解惑: 疑问2: 解惑: 疑问3: 解惑: 小组合作型利用平均值不等式求最大小值设x,y,z均是正数,x2y3z0,那么的最小值为_【精彩点拨】由条件消去y,然后利用平均值不等式求最小值【自主解答】由x2y3z0,得y,3.当且仅当xy3z时,获得最小值3.【答案】3此题解题的关键是根据条件消掉目的函数中的y,通过对目的函数的变形,转化为考生所熟悉的能使用根本不等式求最值的问题.再练一题1函数yx>1的最大值是_【解析】y.x>1,x1>0.因此x12,x1332.当且仅当x1
3、,x1时等号成立0<y32x1时取等号故ymax32.【答案】32灵敏运用条件求最值x>0,y>0,且1,求xy的最小值【精彩点拨】此题考察利用平均值不等式求最值以及利用不等式知识分析、解决问题的才能解答此题可灵敏使用“1的代换或对条件进展必要的变形,再用平均值不等式求得和的最小值【自主解答】法一:x>0,y>0,1,xyxy1061016.当且仅当,又1,即x4,y12时,上式取等号故当x4,y12时,xymin16.法二:由1,得x1y99定值,可知x>1,y>9,而xyx1y91021016.所以当且仅当x1y93,即x4,y12时,上式取等号故
4、当x4,y12时,xymin16.利用平均值不等式求最值,一般按以下三步进展:(1)首先,看式子能否出现和(或积)的定值,假设不具备,需对式子变形,凑出需要的定值;(2)其次,看所用的两项是否同正,假设不满足,通过分类解决,同负时,可提取“1变为同正;(3)利用条件对取等号的情况进展验证.假设满足,那么可取最值,假设不满足,那么可通过函数单调性或导数解决.,切记利用平均值不等式求最值时的三个条件:“一正二定三相等必须同时满足,函数方可获得最值,否那么不可以.再练一题2x>0,y>0,且x2y1,求的最小值. 【导学号:94910013】【解】x,y0,x2y1,1232.当,即xy
5、,也就是y1,x1时等号成立,故的最小值为32.探究共研型用平均值不等式求解应用题探究解不等式实际应用题的解题思路是怎样的?【提示】解不等式实际应用题的解题思路如图131,要设计一张矩形广告,该广告含有大小相等的左右两个矩形栏目即图中阴影部分,这两栏的面积之和为18 000 cm2,四周空白的宽度为10 cm,两栏之间的中缝空白的宽度为5 cm,怎样确定广告的高与宽的尺寸单位:cm,能使矩形广告面积最小?图131【精彩点拨】【自主解答】法一:设矩形栏目的高为a cm,宽为b cm,那么ab9 000.广告的高为a20,宽为2b25,其中a>
6、0,b>0.广告的面积Sa202b252ab40b25a50018 50025a40b18 500218 500224 500.当且仅当25a40b时等号成立,此时ba,代入式得a120,从而b75.即当a120,b75时,S获得最小值24 500 cm2.故广告的高为140 cm,宽为175 cm时,可使广告的面积最小,最小值为24 500 cm2.法二:设广告的高和宽分别为x cm,y cm,那么每栏的高和宽分别为x20,其中x>20,y>25,两栏的面积之和为2x20·18 000,由此得y25.广告的面积Sxyx·x25x,整理得S25x2018
7、500,因为x20>0,所以S218 50024 500.当且仅当25x20时等号成立,此时有x20214 400x>20,解得x140,代入y25,得y175,即当x140,y175时,S获得最小值24 500 cm2,故广告的高为140 cm,宽为175 cm时,可使广告的面积最小,最小值为24 500 cm2.利用根本不等式解决实际问题的一般思路是:,(1)在理解题意的根底上,合理设出变量,找出实际问题的数学模型建立函数关系式,并求出函数定义域;(2)由建立的函数关系式转化为求函数的最大值或最小值问题;(3)在函数定义域内,求出函数的最大值或最小值;(4)结合实际问题,求出实
8、际问题的解.再练一题3某商场预计全年分批购入每台价值为2 000元的电视机共3 600台,每批都购入x台xN,且每批均需付运费400元,储存购入的电视机全年所付保管费与每批购入电视机的总价值不含运费成正比,假设每批购入400台,那么全年需用去运输和保管费43 600元,如今全年只有24 000元资金可以用于支付这笔费用,请问:能否恰当安排每批进货的数量,使资金够用?写出你的结论,并说明理由【解】设每批购置x台电视机,共需运输和保管的总费用为y元由题意可得保管费k·2 000xk>0,总运输费为400·.因为43 600400×9k·400×
9、;2 000,所以k.所以y·2 000x400·100100·224 000.当且仅当x,即x120时等号成立所以只要安排每批购置120台电视机时,可以使资金够用构建·体系10<x<1,那么x1x取最大值时x的值为A.B.C.D【解析】0<x<1,x1x2,当且仅当x时取等号【答案】B2函数fx的最大值为A.BC.D1【解析】显然x0.当x0时,fx0;当x>0时,x12,fx.当且仅当x1时,等号成立,fxmax.【答案】B3t>0,那么函数y的最小值为_【解析】t>0,yt4242.【答案】24设x,yR,且xy0,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年大学物理高效备战试题及答案
- 中国涤纶低弹网络丝行业市场发展前景及发展趋势与投资战略研究报告2025-2028版
- 九校协作体试题及答案
- 中国橡胶履块行业市场发展前景及发展趋势与投资战略研究报告2025-2028版
- 中国木雕大床行业市场发展前景及发展趋势与投资战略研究报告2025-2028版
- 中国智慧地铁行业市场深度调研及发展趋势与投资前景研究报告2025-2028版
- 土木工程师考试成功通过的个人总结与经验传授试题及答案
- 货车租赁合同中的合作条款
- 电话销售中的沟通技巧提升考核试卷
- 稀土金属提炼过程中的企业案例与经验分享考核试卷
- 红色旅游知到智慧树章节测试课后答案2024年秋南昌大学
- 人工智能基础知到智慧树章节测试课后答案2024年秋北京科技大学
- 英语四级模拟试题(附答案)
- 干部履历表填写范本(中共中央组织部1999年)
- (正式版)JBT 3300-2024 平衡重式叉车 整机试验方法
- 专题四“挺膺担当”主题团课
- 美的空调制造工艺手册
- 土方清运施工组织设计
- 钻孔灌注桩工程结算关于充盈系数的争议处理及分析(苏亚金爱国)
- 拌合站水泥罐基础地基承载力计算书
- 工程部部门,岗位职责,管理制度
评论
0/150
提交评论