




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、精选文档二次函数讲义2.1 二次函数所描述的关系知识点归纳:二次函数的定义:一般地,如果是常数,那么叫做的二次函数. 二次函数具备三个条件,缺一不可:(1)是整式方程;(2)是一个自变量的二次式;(3)二次项系数不为0典型例题:例1、 函数y=(m2)x2x1是二次函数,则m= 例2、 下列函数中是二次函数的有( )y=x;y=3(x1)22;y=(x3)22x2;y=xA1个 B2个 C3个 D4个例3、某商场将进价为40元的某种服装按50元售出时,每天可以售出300套据市场调查发现,这种服装每提高1元售价,销量就减少5套,如果商场将售价定为x,请你得出每天销售利润y与售价的函数表达式例4
2、、如图,正方形ABCD的边长为4,P是BC边上一点,QPAP交DC于Q,如果BP=x,ADQ的面积为y,用含x的代数式表示y训练题:1已知函数y=ax2bxc(其中a,b,c是常数),当a 时,是二次函数;当a ,b 时,是一次函数;当a ,b ,c 时,是正比例函数2当m 时,y=(m2)x是二次函数3已知菱形的一条对角线长为a,另一条对角线为它的倍,用表达式表示出菱形的面积S与对角线a的关系4在物理学内容中,如果某一物体质量为m,它运动时的能量E与它的运动速度v之间的关系是E=mv2(m为定值)(1)若物体质量为1,填表表示物体在v取下列值时,E的取值:v12345678E(2)若物体的运
3、动速度变为原来的2倍,则它运动时的能量E扩大为原来的多少倍?5、请你分别给a,b,c一个值,让为二次函数,且让一次函数y=ax+b的图像经过一、二、三象限6下列不是二次函数的是( )Ay=3x24 By=x2 Cy= Dy=(x1)(x2)7函数y=(mn)x2mxn是二次函数的条件是( )Am、n为常数,且m0Bm、n为常数,且mnCm、n为常数,且n0Dm、n可以为任何常数8如图,校园要建苗圃,其形状如直角梯形,有两边借用夹角为135的两面墙,另外两边是总长为30米的铁栅栏(1)求梯形的面积y与高x的表达式;(2)求x的取值范围9如图,在矩形ABCD中,AB=6cm,BC=12cm点P从点
4、A开始沿AB方向向点B以1cm/s的速度移动,同时,点Q从点B开始沿BC边向C以2cm/s的速度移动如果P、Q两点分别到达B、C两点停止移动,设运动开始后第t秒钟时,五边形APQCD的面积为Scm2,写出S与t的函数表达式,并指出自变量t的取值范围10已知:如图,在RtABC中,C=90,BC=4,AC=8点D在斜边AB上,分别作DEAC,DFBC,垂足分别为E、F,得四边形DECF设DE=x,DF=y(1)AE用含y的代数式表示为:AE= ;(2)求y与x之间的函数表达式,并求出x的取值范围;(3)设四边形DECF的面积为S,求S与x之间的函数表达式2.2 结识抛物线知识点归纳:1、作图“三
5、步取”:一般地,二次函数图像的作法和一次函数及反比例函数图像的作法过程相同,都是三步:列表、描点、连线。 规律技巧:列表时注意以0为中心,对称取值(一般取3-4组值)。观察图像,可得抛物线的开口方向、对称轴。学习过程:一、作二次函数y=x的图象。二、议一议:1.你能描述图象的形状吗?与同伴交流。2.图象与x轴有交点吗?如果有,交点的坐标是什么?3.当x0时呢?4.当x取什么值时,y的值最小?5.图象是轴对称图形吗?如果是,它的对称轴是什么?请你找出几对对称点,并与同伴交流。三、y=x的图象的性质:典型例题:例1、求出函数y=x2与函数y=x2的图象的交点坐标 例2、在同一直角坐标系中画出y=3
6、x2、 y=- 3x2 的图像例3、已知a1,点(a1,y1)、(a,y2)、(a1,y3)都在函数y=x2的图象上,则( )Ay1y2y3 By1y3y2 Cy3y2y1 Dy2y1y3训练题:1函数y=x2的顶点坐标为 若点(a,4)在其图象上,则a的值是 2若点A(3,m)是抛物线y=x2上一点,则m= 3函数y=x2与y=x2的图象关于 对称,也可以认为y=x2,是函数y=x2的图象绕 旋转得到4若二次函数y=ax2(a0),图象过点P(2,8),则函数表达式为 5点A(,b)是抛物线y=x2上的一点,则b= ;点A关于y轴的对称点B是 ,它在函数 上;点A关于原点的对称点C是 ,它在
7、函数 上6若a1,点(a1,y1)、(a,y2)、(a1,y3)都在函数y=x2的图象上,判断y1、y2、y3的大小关系?7如图,A、B分别为y=x2上两点,且线段ABy轴,若AB=6,则直线AB的表达式为( )Ay=3 By=6 Cy=9 Dy=368、函数y=ax2 (a0)的图像与直线y=-2x-3交于点(1,b) (1)求a和b的值(2)求抛物线y=ax2 的解析式,并求出顶点坐标和对称轴;(3)x取何值时,二次函数y=ax2 中的y随x的增大而增大?(4)求抛物线与直线y=-2的两个交点及顶点所构成的三角形的面积。9、如图,把抛物线与直线围成的图形绕原点顺时针旋转后,再沿轴向右平移1
8、个单位得到图形则下列结论错误的是( )A点的坐标是 B点的坐标是C四边形是矩形 D若连接则梯形的面积是3OyxB10、有一座抛物线形拱桥,正常水位时桥下水面宽度为20米,拱顶距离水面4米。(1)在如图3所示的直角坐标系中,求出该抛物线的解析式;(2)在正常水位的基础上,当水位上升h(米)时,桥下水面的宽度为d(米)。试求出将d表示为h的函数解析式;(3)设正常水位时,桥下的水深为2米,为保证过往船只顺利航行,桥下水面的宽度不得小于18米,求水深超过多少米时就会影响过往船只在桥下顺利航行。 2.3 刹车距离与二次函数学习目标:1经历探索二次函数y=ax2和y=ax2c的图象的作法和性质的过程,进
9、一步获得将表格、表达式、图象三者联系起来的经验2会作出y=ax2和y=ax2c的图象,并能比较它们与y=x2的异同,理解a与c对二次函数图象的影响3能说出y=ax2c与y=ax2图象的开口方向、对称轴和顶点坐标4体会二次函数是某些实际问题的数学模型学习重点:二次函数y=ax2、y=ax2c的图象和性质,因为它们的图象和性质是研究二次函数y=ax2bxc的图象和性质的基础我们在学习时结合图象分别从开口方向、对称轴、顶点坐标、最大(小值)、函数的增减性几个方面记忆分析学习难点:由函数图象概括出y=ax2、y=ax2c的性质函数图象都由(1)列表,(2)描点、连线三步完成我们可根据函数图象来联想函数
10、性质,由性质来分析函数图象的形状和位置学习过程:一、复习:二次函数y=x2 与y=-x2的性质:抛物线y=x2y=-x2对称轴顶点坐标开口方向位置增减性最值二、问题引入:你知道两辆汽车在行驶时为什么要保持一定距离吗?刹车距离与什么因素有关?有研究表明:汽车在某段公路上行驶时,速度为v(km/h)汽车的刹车距离s(m)可以由公式:晴天时:;雨天时:,请分别画出这两个函数的图像三、动手操作、探究:1.在同一平面内画出函数y=2x2与y=2x2+1的图象。2.在同一平面内画出函数y=3x2与y=3x2-1的图象。比较它们的性质,你可以得到什么结论?典型例题:例1 、已知抛物线y=(m1)x开口向下,
11、求m的值例2 、k为何值时,y=(k2)x是关于x的二次函数?例3 、在同一坐标系中,作出函数y=3x2,y=3x2,y=x2,y=x2的图象,并根据图象回答问题:(1)当x=2时,y=x2比y=3x2大(或小)多少?(2)当x=2时,y=x2比y=3x2大(或小)多少?例4、已知直线y=2x3与抛物线y=ax2相交于A、B两点,且A点坐标为(3,m)(1)求a、m的值;(2)求抛物线的表达式及其对称轴和顶点坐标;(3)x取何值时,二次函数y=ax2中的y随x的增大而减小;(4)求A、B两点及二次函数y=ax2的顶点构成的三角形的面积例5、如图,已知一抛物线形大门,其地面宽度AB18m.一同学
12、站在门内,在离门脚B点1m远的D处,垂直地面立起一根1.7m长的木杆,其顶端恰好顶在抛物线形门上C处.根据这些条件,请你求出该大门的高度h.训练题:1抛物线y=4x24的开口向 ,当x= 时,y有最 值,y= 2当m= 时,y=(m1)x3m是关于x的二次函数3抛物线y=3x2上两点A(x,27),B(2,y),则x= ,y= 4当m= 时,抛物线y=(m1)x9开口向下,对称轴是 在对称轴左侧,y随x的增大而 ;在对称轴右侧,y随x的增大而 5抛物线y=3x2与直线y=kx3的交点为(2,b),则k= ,b= 6已知抛物线的顶点在原点,对称轴为y轴,且经过点(1,2),则抛物线的表达式为7在
13、同一坐标系中,图象与y=2x2的图象关于x轴对称的是( )Ay=x2By=x2Cy=2x2Dy=x28抛物线,y=4x2,y=2x2的图象,开口最大的是( )Ay=x2By=4x2Cy=2x2D无法确定9对于抛物线y=x2和y=x2在同一坐标系里的位置,下列说法错误的是( )A两条抛物线关于x轴对称B两条抛物线关于原点对称C两条抛物线关于y轴对称D两条抛物线的交点为原点10二次函数y=ax2与一次函数y=axa在同一坐标系中的图象大致为( )11已知函数y=ax2的图象与直线y=x4在第一象限内的交点和它与直线y=x在第一象限内的交点相同,则a的值为( )A4B2CD12求符合下列条件的抛物线
14、y=ax2的表达式:(1)y=ax2经过(1,2);(2)y=ax2与y=x2的开口大小相等,开口方向相反;(3)y=ax2与直线y=x3交于点(2,m)13如图,直线经过A(3,0),B(0,3)两点,且与二次函数y=x21的图象,在第一象限内相交于点C求:(1)AOC的面积;(2)二次函数图象顶点与点A、B组成的三角形的面积14有一座抛物线型拱桥,桥下面在正常水位AB时宽20m水位上升3m,就达到警戒线CD,这时,水面宽度为10m(1)在如图2-3-9所示的坐标系中求抛物线的表达式;(2)若洪水到来时,水位以每小时02m的速度上升,从警戒线开始,再持续多少小时才能到拱桥顶? 15、(200
15、8兰州)一座拱桥的轮廓是抛物线型(如图1所示),拱高6m,跨度20m,相邻两支柱间的距离均为5m(1)将抛物线放在所给的直角坐标系中(如图2所示),求抛物线的解析式;(2)求支柱的长度;(3)拱桥下地平面是双向行车道(正中间是一条宽2m的隔离带),其中的一条行车道能否并排行驶宽2m、高3m的三辆汽车(汽车间的间隔忽略不计)?请说明你的理由(共10分)yxOBAC图220m10mEF图16m 2.4 二次函数的图象知识点归纳:1、求抛物线的顶点、对称轴的方法 (1)公式法:,顶点是,对称轴是直线. (2)配方法:运用配方的方法,将抛物线的解析式化为的形式,得到顶点为(,),对称轴是直线. (3)
16、运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以抛物线上对称点的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点2、二次函数的图象及性质: (1)二次函数y=ax2 (a0)的图象是一条抛物线,其顶点是原点,对称轴是y轴;当a0时,抛物线开口向上,顶点是最低点;当a0时,抛物线开口向下,顶点是最高点;a越小,抛物线开口越大(2)二次函数的图象是一条对称轴平行y轴或者与y轴重合的抛物线顶点为(,),对称轴x=;当a0时,抛物线开口向上,图象有最低点,且x,y随x的增大而增大,x,y随x的增大而减小;当a0时,抛物线开口向下,图象有最高点,且x,y随x的增大而减小,x,y
17、随x的增大而增大(3)当a0时,当x=时,函数有最小值;当a0时,当x x=时,函数有最大值3、图象的平移:将二次函数y=ax2 (a0)的图象进行平移,可得到y=ax2c,y=a(xh)2,y=a(xh)2k的图象 将y=ax2的图象向上(c0)或向下(c 0)平移|c|个单位,即可得到y=ax2c的图象其顶点是(0,c)形状、对称轴、开口方向与抛物线y=ax2相同 将y=ax2的图象向左(h0)或向右(h0)平移|h|个单位,即可得到y=a(xh)2的图象其顶点是(h,0),对称轴是直线x=h,形状、开口方向与抛物线y=ax2相同 将y=ax2的图象向左(h0)或向下(k0)平移|k|个单
18、位,即可得到y=a(xh)2 +k的图象,其顶点是(h,k),对称轴是直线x=h,形状、开口方向与抛物线y=ax2相同记住规律:左加右减,上加下减典型例题:例1、二次函数y=ax2bx2c的图象如图所示,则a 0,b 0,c 0(填“”或“”)例2、二次函数y=ax2bxc与一次函数y=axc在同一坐标系中的图象大致是图中的( )例3、在同一坐标系中,函数y=ax2bx与y=的图象大致是图中的( )例4、如图所示的是桥梁的两条钢缆具有相同的抛物线形状按照图中建立的直角坐标系,左面的一条抛物线可以用y=00225x209x10表示,而且左右两条抛物线关于y轴对称,你能写出右面钢缆的表达式吗?例5
19、、图中各图是在同一直角坐标系内,二次函数y=ax2(ac)xc与一次函数y=axc的大致图象,有且只有一个是正确的,正确的是( )例6、抛物线y=ax2bxc如图所示,则它关于y轴对称的抛物线的表达式是 例7、已知二次函数y=(m2)x2(m3)xm2的图象过点(0,5)(1)求m的值,并写出二次函数的表达式;(2)求出二次函数图象的顶点坐标、对称轴例8、已知抛物线y=a(xt1)2t2(a,t是常数,a0,t0)的顶点是A,抛物线y=x22x1的顶点是B(如图)(1)判断点A是否在抛物线y=x22x1上,为什么?(2)如果抛物线y=a(xt1)2t2经过点B求a的值;这条抛物线与x轴的两个交
20、点和它的顶点A能否成直角三角形?若能,求出t的值;若不能,请说明理由例9、 如图所示,有一边长为5cm的正方形ABCD和等腰三角形PQR,PQ=PR=5cm,PR=8cm,点B、C、Q、R在同一直线上当CQ两点重合时,等腰PQR以1cm/秒的速度沿直线按箭头所示方向开始匀速运动,t秒后,正方形ABCD与等腰PQR重合部分的面积为Scm2解答下列问题:(1)当t=3秒时,求S的值;(2)当t=5秒时,求S的值;例10、某玩具厂计划生产一种玩具熊猫,每日最高产量为40只,且每日生产的产品全部售出已知生产x只玩具熊猫的成本为R(元),每只售价为P(元),且R,P与x的表达式分别为R=50030x,P
21、=1702x(1)当日产量为多少时,每日获利为1750元?(2)当日产量为多少时,可获得最大利润?最大利润是多少?训练题:1抛物线y=2x26x1的顶点坐标为 ,对称轴为 2如图,若a0,b0,c0,则抛物线y=ax2bxc的大致图象为( )3已知二次函数y=x2x6,当x= 时,y最小= ;当x 时,y随x的增大而减小4抛物线y=2x2向左平移1个单位,再向下平移3个单位,得到的抛物线表达式为5二次函数y=ax2bxc的图象如图所示,则ac 0(填“”、“”或“=”)。6已知点(1,y1)、(3,y2)、(,y3)在函数y=3x26x12的图象上,则y1、y2、y3的大小关系是( )Ay1y
22、2y3 By2y1y3 Cy2y3y1 Dy3y1y27二次函数y=x2bxc的图象的最高点是(1,3),则b、c的值是( )Ab=2,c=4 Bb=2,c=4 Cb=2,c=4 Db=2,c=48如图,坐标系中抛物线是函数y=ax2bxc的图象,则下列式子能成立的是( )Aabc0 Babc0 Cbac D2c3b9函数y=ax2bxc和y=axb在同一坐标系中,如图所示,则正确的是( )10已知抛物线y=ax2bxc经过点A(4,2)和B(5,7)且过点C(0,3)(1)求抛物线的表达式;(2)用描点法画出这条抛物线11如图,已知二次函数y=x2bxc,图象过A(3,6),并与x轴交于B(
23、1,0)和点C,顶点为P(1)求这个二次函数表达式;(2)设D为线段OC上的一点,且满足DPC=BAC,求D点坐标12已知矩形的长大于宽的2倍,周长为12,从它的一个点作一条射线将矩形分成一个三角形和一个梯形,且这条射线与矩形一边所成的角的正切值等于设梯形的面积为S,梯形中较短的底的长为x,试写出梯形面积关于x的函数表达式,并指出自变量x的取值范围13某商店经销一种销售成本为每千克40元的水产品据市场分析,若按每千克50元销售,一个月能售出500千克;销售单位每涨1元,月销售量就减少10千克针对这种水产品的销售情况,请解答以下问题:(1)当销售单价定为每千克55元时,计算月销售量和月销售利润;
24、(2)设销售单价为每千克x元,月销售利润为y元,求y与x的函数表达式(不必写出x的取值范围);(3)商店想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应定为多少?14如图2-4-24,在RtABC中,ACB=90,AB=10,BC=8,点D在BC上运动(不运动至B、C),DECA,交AB于E设BD=x,ADE的面积为y(1)求y关于x的函数表达式及自变量x的取值范围;(2)ADE的面积何时最大,最大面积是多少?(3)求当tanECA=4时,ADE的面积 15已知:如图2-4-25,在RtABC中,C=90,BC=4cm,AC=3cm若ABC与ABC完全重合,令
25、ABC固定不动,将ABC沿CB所在的直线向左以1cm/s的速度移动设移动xs后,ABC与ABC的重叠部分的面积为ycm2求:(1)y与x之间的函数关系;(2)几秒钟后两个三角形重叠部分的面积等于cm2?2.5 用三种方式表示二次函数知识点归纳:一、二次函数的三种表示方法:1、解析法(用函数表达式表示)、2、表格法 3、图像法表示方法优点缺点解析法变量关系简捷明了,便于分析计算需要通过计算,才能得到所需结果表格法能直接得到某些具体的对应值不能反映函数整体的变化情况图像法直观表示了变量间变化过程和变化趋势函数值只能是近似值三者关系表达式是基础,是重点,表格是画图像的关键,图像是在表达式和表格的基础
26、上对函数总体的概括和形象化的表达二、用待定系数法求二次函数的解析式 (1)一般式:.已知图像上三点或三对、的值,通常选择一般式. (2)顶点式:.已知图像的顶点或对称轴,通常选择顶点式. (3)交点式:已知图像与轴的交点坐标、,通常选用交点式:四、例题:例1、已知函数y=x2bx1的图象经过点(3,2)(1)求这个函数的表达式;(2)画出它的图象,并指出图象的顶点坐标;(3)当x0时,求使y2的x的取值范围 例2、 根据下列条件,求抛物线的解析式(1)经过点(0,-1),(1,),(-2,-5);(2)经过点(-3,2),顶点是(-2,3);(3)与轴两交点坐标分别为(-2,0),(2,0)并
27、且与轴交于点(0,-2)例3、 一次函数y=2x3,与二次函数y=ax2bxc的图象交于A(m,5)和B(3,n)两点,且当x=3时,抛物线取得最值为9(1)求二次函数的表达式;(2)在同一坐标系中画出两个函数的图象;(3)从图象上观察,x为何值时,一次函数与二次函数的值都随x的增大而增大(4)当x为何值时,一次函数值大于二次函数值?例4、 行驶中的汽车,在刹车后由于惯性的作用,还要继续向前滑动一段距离才停止,这段距离称为“刹车距离”为了测定某种型号汽车的刹车性能(车速不超过130km/h),对这种汽车进行测试,测得数据如下表:刹车时车速(km/h)010203040506070刹车距离(m)
28、0112439567596119(1)以车速为x轴,刹车距离为y轴,在下面的方格图中建立坐标系,描出这些数据所表示的点,并用平滑曲线连接这些点,得到函数的大致图象;(2)观察图象,估计该函数的类型,并确定一个满足这些数据的函数表达式;(3)该型号汽车在国道上发生了一次交通事故,现测得刹车距离为264m,问在事故发生时,汽车是超速行驶还是正常行驶,请说明理由例5、 某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿市场售价与上市时间的关系用图中的一条折线表示,西红柿的种植成本与上市时间关系用图中的抛物线表示(1)写出图中表示的市场售价与时间的函数表达式P=f(t),写出图
29、中表示的种植成本与时间函数表达式Q=g(t);(2)认定市场售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大?(注:市场售价和种植成本的单位:元/102kg,时间单位:天)训练题:1已知函数y=ax2bxc(a0)的图象,如图所示,则下列关系式中成立的是( )A01 B02 C12 D=1图 图2抛物线y=ax2bxc(c0)如图所示,回答:(1)这个二次函数的表达式是;(2)当x=时,y=3;(3)根据图象回答:当x时,y03已知抛物线y=x2(62k)x2k1与y轴的交点位于(0,5)上方,则k的取值范围是4若抛物线y=ax2b不经过第三、四象限,则抛物线y=ax2bxc( )A开口
30、向上,对称轴是y轴B开口向下,对称轴是y轴C开口向上,对称轴平行于y轴D开口向下,对称轴平行于y轴2二次函数y=x2bxc图象的最高点是(1,3),则b、c的值是( )Ab=2,c=4 Bb=2,c=4 Cb=2,c=4 Db=2,c=45二次函数y= ax2bxc(a0)的图象如图所示,下列结论:c0;b0;4a2bc0;(ac)2b2其中正确的有( )A1个B2个C3个D4个6两个数的和为8,则这两个数的积最大可以为,若设其中一个数为x,积为y,则y与x的函数表达式为7一根长为100m的铁丝围成一个矩形的框子,要想使铁丝框的面积最大,边长分别为8若两个数的差为3,若其中较大的数为x,则它们
31、的积y与x的函数表达式为,它有最值,即当x=时,y=9抛物线y=x2kx2k通过一个定点,这个定点的坐标为10已知抛物线y=x2xb2经过点(a,)和(a,y1),则y1的值是 11如图,图是棱长为a的小正方体,、是由这样的小正方体摆放而成,按照这样的方法继续摆放,由上而下分别叫第一层、第二层第n层,第n层的小正方体的个数记为S,解答下列问题:(1)按照要求填表:n1234s136(2)写出当n=10时,S=(3)根据上表中的数据,把S作为纵坐标,n作为横坐标,在平面直角坐标系中描出相应的点(4)请你猜一猜上述各点会在某一函数图象上吗?如果在某一函数的图象上,求出该函数的表达式12某公司推出了
32、一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到盈利的过程图中二次函数图象(部分)刻画了该公司年初以来累积利润S(万元)与销售时间t(月)之间的关系(即前t个月的利润总和S与t之间的关系)根据图象提供的信息,解答下列问题:(1)由已知图象上的三点坐标,求累积利润S(万元)与时间t(月)之间的函数表达式;(2)求截止到几月末公司累积利润可达到30万元;(3)求第8个月公司所获利润是多少万元?2.6 二次函数的最值问题知识点归纳:对二次函数,若自变量为任意实数,则取最值情况为:(1)当时,(2)当时, 若自变量的取值范围为,则取最值分和两种情况,由、与的大小关系确定。1对于:(1)当,因为对
33、称轴左侧随的增大而减小,所以的最大值为,最小值为。这里、分别是在与时的函数值。(2)当,因为对称轴右侧随的增大而增大,所以的最大值为,最小值为。(3)当,的最大值为、 中较大者,的最小值为.2对于(1)当,的最大值为,最小值为。(2)当,的最大值为,最小值为。(3)当,的最小值为、 中较大者,的最大值为.综上所述,求函数的最大、最小值,需比较三个函数值:、典型例题:例1、某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件(1)若商场平均每天要盈利1200元,每件
34、衬衫应降价多少元?(2)每件衬衫降低多少元时,商场平均每天盈利最多?例2、.某商场销售某种品牌的纯牛奶,已知进价为每箱40元,生产厂家要求每箱售价在4070元之间市场调查发现:若每箱以50元销售,平均每天可销售90箱,价格每降低1元,平均每天多销售3箱,价格每升高1元,平均每天少销售3箱(1)写出平均每天销售(y)箱与每箱售价x(元)之间的函数关系式(注明范围)(2)求出商场平均每天销售这种牛奶的利润W(元)与每箱牛奶的售价x(元)之间的二次函数关系式(每箱的利润售价进价)(3)求出(2)中二次函数图象的顶点坐标,并求当x40,70时W的值在坐标系中画出函数图象的草图(4)由函数图象可以看出,
35、当牛奶售价为多少时,平均每天的利润最大?最大利润为多少?例3、如图,在一个直角三角形的内部作一个矩形ABCD,其中AB和AD分别在两直角边上.(1).设矩形的一边AB=xcm,那么AD边的长度如何表示?(2).设矩形的面积为ym2,当x取何值时,y的最大值是多少? 训练题:1、y=3x2-x2, 当x 时,y随x的增大而减小,当x 时,y有最大值2、周长为60cm的矩形,设其一边为xcm,则当x=_时,矩形面积最大,为_.3、若抛物线的对称轴是x=3,函数有最小值为8,且过(0,26),则其解析式为_.4、已知边长为4的正方形截去一个角后成为五边形ABCDE(如图),其中AF=2,BF=1试在
36、AB上求一点P,使矩形PNDM有最大面积5、启明公司生产某种产品,每件产品成本是3元,售价是4元,年销售量为10万件。为了获得更好的效益,公司准备拿出一定的资金做广告,根据经验,每年投入的广告费是x(万元)时,产品的年销售量将是原销售量的y倍,且。如果把利润看作是销售总额减去成本费和广告费,试写出年利润S(万元)与广告费x(万元)的函数关系式,并计算广告是多少万元时,公司获得的年利润最大,最大年利润是多少万元?6、如图,有长为24米的篱笆,围成中间隔有一道篱笆的长方形的花圃,且花圃的长可借用一段墙体。(墙体的最大可用长度a=10米)设AB=,长方形ABCD的面积为(1) 求S与x的函数关系式;
37、(2) 如果要围成面积为45平方米更大的花圃,AB的长是多少米?(3) 能围成面积比45平方米更大的花圃吗?如果能,请求出最大面积,并说明围法;如果不能,请说明理由。7、某通讯器材公司销售一种市场需求较大的新型通讯产品,已知每件产品的进价40元,每年销售该产品的总开支(不含进价)总计120万元,在销售过程中发现,年销售量y(万件)与销售单价x(元)之间存在着如图所示的一次函数关系。(1) 求y关于x的函数关系式;(2) 试写出该公司销售该种产品的年获利z(万元)关于销售单价x(元)的函数关系式(年获利=年销售额-年销售产品总进价-年总开支),当销售单价x为何值时,年获利最大?并求这个最大值;(
38、3) 若公司希望这种产品一年的销售获利不低于40万元,借助(2)中函数的图像,请你帮助该公司确定销售单价的范围,在此情况下,要使产品销售量最大你认为销售单价应定为多少元?8、如图所示,在直角梯形ABCD中,A=D=90,截取AE=BF=DG=x.已知AB=6,CD=3,AD=4.求(1)四边形CGEF的面积S关于x的函数表达式和x的取值范围.(2)当x取何值时,四边形CGEF的面积S取得最小值 DCBFEA9、已知:如图,在RtABC中,C=90,BC=4,AC=8,点D在斜边AB上, 分别作DEAC,DFBC,垂足分别为E、F,得四边形DECF,设DE=x,DF=y. (1)用含y的代数式表示AE. (2)求y与x之间的函数关系式,并求出x的取值范围.(3)设四边形DECF的面积为S,求出S的最大值. 2.7 二次函数与一元二次方程知识点归纳:1、 二次函数与一元二次方程的关系:二次函数(,当y=0时,二次函数就变成了一元二次方程,因为x轴可以用y=0表示,所以的根就是二次函数与x轴交点的横坐标2、直线与抛物线的交点 (1)抛物线与轴的交点 二次函数的图像与轴的两个交点的横坐标、,是对应一元二次方程的两个实数根.抛物线与轴的交点情况可以由对
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高三数学复习试题与答案要点
- 江苏省南京市、盐城市2025届高三下学期3月一模试题 英语 含解析
- 材料力学与智能制造重点基础知识点
- 材料疲劳裂纹扩展数据分析方法原理重点基础知识点
- 景点火灾应急预案目录(3篇)
- 计算机软件考试难点突破试题及答案
- 2025年法学概论考试技巧与试题及答案
- 停水停电火灾应急预案(3篇)
- 高考数学典型试题及答案
- 网络监控系统的功能与配置试题及答案
- 化工总经理岗位职责
- 小学英语复习讲座88课件
- 医院发生意外自杀的应急预案流程
- 中山职业技术学院宿舍宽带接入校园网连接技术方案
- 经济学论文的选题与写作
- 过热蒸汽压力控制设计
- 国际志愿服务培训与实践-浙江外国语学院中国大学mooc课后章节答案期末考试题库2023年
- 其他常见疾病的康复
- 技术人员能力考核评分表
- 中国传统文化知到章节答案智慧树2023年西安理工大学
- 英语阅读知到章节答案智慧树2023年北京大学
评论
0/150
提交评论