




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、中考数学考前必做专题试题矩形、菱形为了能更好更全面的做好复习和迎考准备,确保将所涉及的中考考点全面复习到位,让孩子们充满信心的步入考场,现特准备了中考数学考前必做专题试题。一、选择题1. 2019上海,第6题4分如图,AC、BD是菱形ABCD的对角线,那么以下结论一定正确的选项是A. ABD与ABC的周长相等B. ABD与ABC的面积相等C. 菱形的周长等于两条对角线之和的两倍D. 菱形的面积等于两条对角线之积的两倍考点: 菱形的性质.分析: 分别利用菱形的性质结合各选项进而求出即可.解答: 解:A、四边形ABCD是菱形,AB=BC=AD,ACABD与ABC的周长不相等,故此选项错误;B、SA
2、BD=S平行四边形ABCD,SABC=S平行四边形ABCD,ABD与ABC的面积相等,故此选项正确;C、菱形的周长与两条对角线之和不存在固定的数量关系,故此选项错误;D、菱形的面积等于两条对角线之积的,故此选项错误;2. 2019山东枣庄,第7题3分如图,菱形ABCD的边长为4,过点A、C作对角线AC的垂线,分别交CB和AD的延长线于点E、F,AE=3,那么四边形AECF的周长为 A. 22 B. 18 C. 14 D. 11考点: 菱形的性质分析: 根据菱形的对角线平分一组对角可得BAC=BCA,再根据等角的余角相等求出BAE=E,根据等角对等边可得BE=AB,然后求出EC,同理可得AF,然
3、后判断出四边形AECF是平行四边形,再根据周长的定义列式计算即可得解.解答: 解:在菱形ABCD中,BAC=BCA,AEAC,BAC+BAE=BCA+E=90,BAE=E,BE=AB=4,EC=BE+BC=4+4=8,同理可得AF=8,ADBC,四边形AECF是平行四边形,3. 2019山东烟台,第6题3分如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,MN与AC交于点O,连接BO.假设DAC=28,那么OBC的度数为A. 28 B. 52 C. 62 D. 72考点:菱形的性质,全等三角形.分析:根据菱形的性质以及AM=CN,利用ASA可得AMOCNO,可得AO=CO,然后可
4、得BOAC,继而可求得OBC的度数.解答:四边形ABCD为菱形,ABCD,AB=BC,MAO=NCO,AMO=CNO,在AMO和CNO中, ,AMOCNOASA,AO=CO,AB=BC,BOAC,BOC=90,DAC=28,4.2019山东聊城,第9题,3分如图,在矩形ABCD中,边AB的长为3,点E,F分别在AD,BC上,连接BE,DF,EF,BD.假设四边形BEDF是菱形,且EF=AE+FC,那么边BC的长为A. 2 B. 3 C. 6 D.考点: 矩形的性质;菱形的性质.分析: 根据矩形的性质和菱形的性质得ABE=EBD=DBC=30,AB=BO=3,因为四边形BEDF是菱形,所以BE,
5、AE可求出进而可求出BC的长.解答: 解:四边形ABCD是矩形,A=90,即BABF,四边形BEDF是菱形,EFBD,EBO=DBF,AB=BO=3,ABE=EBO,ABE=EBD=DBC=30,BE= =2 ,BF=BE=2 ,EF=AE+FC,AE=CF,EO=FO5. 2019浙江杭州,第5题,3分以下命题中,正确的选项是A. 梯形的对角线相等 B. 菱形的对角线不相等C. 矩形的对角线不能互相垂直 D. 平行四边形的对角线可以互相垂直考点: 命题与定理.专题: 常规题型.分析: 根据等腰梯形的断定与性质对A进展判断;根据菱形的性质对B进展判断;根据矩形的性质对C进展判断;根据平行四边形
6、的性质对D进展判断.解答: 解:A、等腰梯形的对角线相等,所以A选项错误;B、菱形的对角线不一定相等,假设相等,那么菱形变为正方形,所以B选项错误;C、矩形的对角线不一定互相垂直,假设互相垂直,那么矩形变为正方形,所以C选项错误;D、平行四边形的对角线可以互相垂直,此时平行四边形变为菱形,所以D选项正确.6.2019年贵州黔东南10.4分如图,在矩形ABCD中,AB=8,BC=16,将矩形ABCD沿EF折叠,使点C与点A重合,那么折痕EF的长为A. 6 B. 12 C. 2 D. 4考点: 翻折变换折叠问题.分析: 设BE=x,表示出CE=16x,根据翻折的性质可得AE=CE,然后在RtABE
7、中,利用勾股定理列出方程求出x,再根据翻折的性质可得AEF=CEF,根据两直线平行,内错角相等可得AFE=CEF,然后求出AEF=AFE,根据等角对等边可得AE=AF,过点E作EHAD于H,可得四边形ABEH是矩形,根据矩形的性质求出EH、AH,然后求出FH,再利用勾股定理列式计算即可得解.解答: 解:设BE=x,那么CE=BCBE=16x,沿EF翻折后点C与点A重合,AE=CE=16x,在RtABE中,AB2+BE2=AE2,即82+x2=16x2,解得x=6,AE=166=10,由翻折的性质得,AEF=CEF,矩形ABCD的对边ADBC,AFE=CEF,AEF=AFE,AE=AF=10,过
8、点E作EHAD于H,那么四边形ABEH是矩形,EH=AB=8,AH=BE=6,FH=AFAH=106=4,7.2019遵义9.3分如图,边长为2的正方形ABCD中,P是CD的中点,连接AP并延长交BC的延长线于点F,作CPF的外接圆O,连接BP并延长交O于点E,连接EF,那么EF的长为A. B. C. D.考点: 相似三角形的断定与性质;正方形的性质;圆周角定理分析: 先求出CP、BF长,根据勾股定理求出BP,根据相似得出比例式,即可求出答案.解答: 解:四边形ABCD是正方形,ABC=PCF=90,CDAB,F为CD的中点,CD=AB=BC=2,CP=1,PCAB,FCPFBA,BF=4,C
9、F=42=2,由勾股定理得:BP= = ,四边形ABCD是正方形,BCP=PCF=90,PF是直径,E=90BCP,PBC=EBF,BCPBEF,8.2019十堰9.3分如图,在四边形ABCD中,ADBC,DEBC,垂足为点E,连接AC交DE于点F,点G为AF的中点,ACD=2ACB.假设DG=3,EC=1,那么DE的长为A. 2 B. C. 2 D.考点: 勾股定理;等腰三角形的断定与性质;直角三角形斜边上的中线.分析: 根据直角三角形斜边上的中线的性质可得DG=AG,根据等腰三角形的性质可得GAD=GDA,根据三角形外角的性质可得CGD=2GAD,再根据平行线的性质和等量关系可得ACD=C
10、GD,根据等腰三角形的性质可得CD=DG,再根据勾股定理即可求解.解答: 解:ADBC,DEBC,DEAD,CAD=ACB点G为AF的中点,DG=AG,GAD=GDA,CGD=2CAD,ACD=2ACB,ACD=CGD,9. 2019江苏徐州,第7题3分假设顺次连接四边形的各边中点所得的四边形是菱形,那么该四边形一定是A.矩形 B. 等腰梯形C.对角线相等的四边形 D. 对角线互相垂直的四边形考点: 中点四边形.分析: 首先根据题意画出图形,由四边形EFGH是菱形,点E,F,G,H分别是边AD,AB,BC,CD的中点,利用三角形中位线的性质与菱形的性质,即可断定原四边形一定是对角线相等的四边形
11、.解答: 解:如图,根据题意得:四边形EFGH是菱形,点E,F,G,H分别是边AD,AB,BC,CD的中点,EF=FG=CH=EH,BD=2EF,AC=2FG,BD=AC.10. 2019山东淄博,第9题4分如图,ABCD是正方形场地,点E在DC的延长线上,AE与BC相交于点F.有甲、乙、丙三名同学同时从点A出发,甲沿着ABFC的途径行走至C,乙沿着AFECD的途径行走至D,丙沿着AFCD的途径行走至D.假设三名同学行走的速度都一样,那么他们到达各自的目的地的先后顺序由先至后是A. 甲乙丙 B. 甲丙乙 C. 乙丙甲 D. 丙甲乙考点: 正方形的性质;线段的性质:两点之间线段最短;比较线段的长
12、短.分析: 根据正方形的性质得出AB=BC=CD=AD,ECF,根据直角三角形得出AFAB,EFCF,分别求出甲、乙、丙行走的间隔 ,再比较即可.解答: 解:四边形ABCD是正方形,AB=BC=CD=AD,B=90,甲行走的间隔 是AB+BF+CF=AB+BC=2AB;乙行走的间隔 是AF+EF+EC+CD;丙行走的间隔 是AF+FC+CD,ECF=90,AFAB,EFCF,AF+FC+CD2AB,AF+FC+CD甲比丙先到,丙比乙先到,11.2019福建福州,第9题4分如图,在正方形ABCD的外侧,作等边三角形ADE. AC,BE相交于点F,那么BFC为【 】A.45 B.55 C.60 D
13、.7512.2019甘肃兰州,第7题4分以下命题中正确的选项是A. 有一组邻边相等的四边形是菱形B. 有一个角是直角的平行四边形是矩形C. 对角线垂直的平行四边形是正方形D. 一组对边平行的四边形是平行四边形考点: 命题与定理.分析: 利用特殊四边形的断定定理对个选项逐一判断后即可得到正确的选项.解答: 解:A、一组邻边相等的平行四边形是菱形,应选项错误;B、正确;C、对角线垂直的平行四边形是菱形,应选项错误;D、两组对边平行的四边形才是平行四边形,应选项错误.13.2019广州,第8题3分将四根长度相等的细木条首尾相接,用钉子钉成四边形 ,转动这个四边形,使它形状改变,当 时,如图 ,测得
14、,当 时,如图 , .A B2 C D图2- 图2-【考点】正方形、有 内角的菱形的对角线与边长的关系【分析】由正方形的对角线长为2可知正方形和菱形的边长为 ,当 =60时,菱形较短的对角线等于边长,故答案为 .【答案】A14.2019广州,第10题3分如图3,四边形 、 都是正方形,点 在线段 上,连接 , 和 相交于点 .设 , .以下结论: ; ; ; .其中结论正确的个数是 .A4个 B3个 C2个 D1个【考点】三角形全等、相似三角形【分析】由 可证 ,故正确;延长BG交DE于点H,由可得 , 对顶角=90,故正确;由 可得 ,故不正确; , 等于相似比的平方,即 ,故正确.【答案】
15、B15.2019毕节地区,第8题3分如图,菱形ABCD中,对角线AC、BC相交于点O,H为AD边中点,菱形ABCD的周长为28,那么OH的长等于 A. 3.5 B. 4 C. 7 D. 14考点: 菱形的性质;直角三角形斜边上的中线;三角形中位线定理分析: 根据菱形的四条边都相等求出AB,菱形的对角线互相平分可得OB=OD,然后判断出OH是ABD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半可得OH= AB.解答: 解:菱形ABCD的周长为28,AB=284=7,OB=OD,H为AD边中点,16.2019襄阳,第12题3分如图,在矩形ABCD中,点E,F分别在边AB,BC上,且
16、AE= AB,将矩形沿直线EF折叠,点B恰好落在AD边上的点P处,连接BP交EF于点Q,对于以下结论:EF=2BE;PF=2PE;FQ=4EQ;PBF是等边三角形.其中正确的选项是A. B. C. D. 考点: 翻折变换折叠问题;矩形的性质分析: 求出BE=2AE,根据翻折的性质可得PE=BE,再根据直角三角形30角所对的直角边等于斜边的一半求出APE=30,然后求出AEP=60,再根据翻折的性质求出BEF=60,根据直角三角形两锐角互余求出EFB=30,然后根据直角三角形30角所对的直角边等于斜边的一半可得EF=2BE,判断出正确;利用30角的正切值求出PF= PE,判断出错误;求出BE=2
17、EQ,EF=2BE,然后求出FQ=3EQ,判断出错误;求出PBF=PFB=60,然后得到PBF是等边三角形,判断出正确.解答: 解:AE= AB,BE=2AE,由翻折的性质得,PE=BE,APE=30,AEP=9030=60,BEF= 180AEP= 18060=60,EFB=9060=30,EF=2BE,故正确;BE=PE,EF=2PE,EFPF,PF2PE,故错误;由翻折可知EFPB,EBQ=EFB=30,BE=2EQ,EF=2BE,FQ=3EQ,故错误;由翻折的性质,EFB=BFP=30,BFP=30+30=60,PBF=90EBQ=9030=60,PBF=PFB=60,PBF是等边三角
18、形,故正确;17.2019孝感,第9题3分如图,正方形OABC的两边OA、OC分别在x轴、y轴上,点D5,3在边AB上,以C为中心,把CDB旋转90,那么旋转后点D的对应点D的坐标是A. 2,10 B. 2,0 C. 2,10或2,0 D. 10,2或2,0考点: 坐标与图形变化-旋转.分析: 分顺时针旋转和逆时针旋转两种情况讨论解答即可.解答: 解:点D5,3在边AB上,BC=5,BD=53=2,假设顺时针旋转,那么点D在x轴上,OD=2,所以,D2,0,假设逆时针旋转,那么点D到x轴的间隔 为10,到y轴的间隔 为2,所以,D2,10,18.2019台湾,第12题3分如图,D为ABC内部一
19、点,E、F两点分别在AB、BC上,且四边形DEBF为矩形,直线CD交AB于G点.假设CF=6,BF=9,AG=8,那么ADC的面积为何?A.16 B.24 C.36 D.54分析:由于ADC=AGCADG,根据矩形的性质和三角形的面积公式计算即可求解.解:ADC=AGCADG=12AGBC12AGBF19.2019台湾,第27题3分如图,矩形ABCD中,AD=3AB,O为AD中点,是半圆.甲、乙两人想在上取一点P,使得PBC的面积等于矩形ABCD的面积其作法如下:甲 延长BO交于P点,那么P即为所求;乙 以A为圆心,AB长为半径画弧,交于P点,那么P即为所求.对于甲、乙两人的作法,以下判断何者
20、正确?A.两人皆正确 B.两人皆错误 C.甲正确,乙错误 D.甲错误,乙正确分析:利用三角形的面积公式进而得出需P甲H=P乙K=2AB,即可得出答案.解:要使得PBC的面积等于矩形ABCD的面积,20.2019浙江宁波,第6题4分菱形的两条对角线长分别是6和8,那么此菱形的边长是 A. 10 B. 8 C. 6 D. 5考点: 菱形的性质;勾股定理.分析: 根据菱形的性质及勾股定理即可求得菱形的边长.解答: 解:四边形ABCD是菱形,AC=8,BD=6,OB=OD=3,OA=OC=4,ACBD,在RtAOB中,由勾股定理得:AB= = =5,21.2019浙江宁波,第11题4分如图,正方形AB
21、CD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是 A. 2.5 B.C.D. 2考点: 直角三角形斜边上的中线;勾股定理;勾股定理的逆定理.分析: 连接AC、CF,根据正方形性质求出AC、CF,ACD=GCF=45,再求出ACF=90,然后利用勾股定理列式求出AF,再根据直角三角形斜边上的中线等于斜边的一半解答即可.解答: 解:如图,连接AC、CF,正方形ABCD和正方形CEFG中,BC=1,CE=3,AC= ,CF=3 ,ACD=GCF=45,ACF=90,由勾股定理得,AF= = =2 ,22.2019呼和浩特,第9题3分矩形ABCD的周长为20cm
22、,两条对角线AC,BD相交于点O,过点O作AC的垂线EF,分别交两边AD,BC于E,F不与顶点重合,那么以下关于CDE与ABF判断完全正确的一项为A. CDE与ABF的周长都等于10cm,但面积不一定相等B. CDE与ABF全等,且周长都为10cmC. CDE与ABF全等,且周长都为5cmD. CDE与ABF全等,但它们的周长和面积都不能确定考点: 矩形的性质;全等三角形的断定与性质;线段垂直平分线的性质.分析: 根据矩形的性质,AO=CO,由EFAC,得EA=EC,那么CDE的周长是矩形周长的一半,再根据全等三角形的断定方法可求出CDE与ABF全等,进而得到问题答案.解答: 解:AO=CO,
23、EFAC,EF是AC的垂直平分线,EA=EC,CDE的周长=CD+DE+CE=CD+AD= 矩形ABCD的周长=10cm,同理可求出ABF的周长为10cm,根据全等三角形的断定方法可知:CDE与ABF全等,23. 2019株洲,第7题,3分四边形ABCD是平行四边形,再从AB=BC,ABC=90,AC=BD,ACBD四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,现有以下四种选法,其中错误的选项是A. 选 B. 选 C. 选 D. 选考点: 正方形的断定;平行四边形的性质.分析: 要断定是正方形,那么需能断定它既是菱形又是矩形.解答: 解:A、由得有一组邻边相等的平行四边形是菱形,由得有一个角是直角的平行四边形是矩形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意;B、由得有一个角是直角的平行四
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025秋统编版三年级语文上册(2024)第七单元《习作 我有一个想法》练习题附答案
- 矿用维修工程车司机三级安全教育(公司级)考核试卷及答案
- 石油钻采设备装配检验工艺考核试卷及答案
- 石材磨边机校准工艺考核试卷及答案
- 柠檬酸发酵工上岗考核试卷及答案
- 2024新版2025秋青岛版六三制三年级数学上册教学课件:第6单元 美丽乡村-轴对称、平移和旋转现象 全单元(3课时)
- 信息技术试题及答案单招
- 服务心理学(第四版)课件 项目三 任务一 熟悉角色理论
- 自动化生产线设计调试常见问题及处理方法试卷
- 2025年XX学校临床医学专业大学生生涯发展展示
- 常见精神科药物的副作用及其处理
- 《公务员法解读》课件
- 《康复科病人营养治》课件
- 2024电力工程质量管理试题与答案
- 助贷电销知识培训课件
- 《风力发电培训》课件
- (完整版)高考英语词汇3500词(精校版)
- 大学生职业规划课件完整版
- 《大学语文》普通高等院校语文课程完整全套教学课件
- 学校护学岗制度
- 燕子矶水厂改建工程(净水厂工程)环评报告表
评论
0/150
提交评论