


下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、精品解析2022年人教版八年级数学下册第十六章-二次根式同步训练试题(含详解) 人教版八年级数学下册第十六章-二次根式同步训练 考试时间:90分钟;命题人:数学教研组 考生注意: 1、本卷分第I卷选择题和第二卷非选择题两部分,满分100分,考试时间90分钟 2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上 3、答案必须写在试卷各个题目指定区域内相应的位置,如必须改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。 第I卷选择题30分 一、单项选择题10小题,每题3分,共计30分 1、以下运算中正确的是 AB C
2、D 2、实数a,b在数轴上的位置如图所示,则 A2a-bBbC-bD2a+b 3、以下二次根式中,最简二次根式是 ABCD 4、以下各式中与是同类二次根式的是 ABCD 5、以下计算中正确的是 ABCD 6、以下计算正确的是 ABCD 7、假设最简二次根式与最简二次根式的被开方数相同,则m的值为 A6B5C4D3 8、以下二次根式中,最简二次根式是 ABCD 9、以下二次根式是最简二次根式的是 ABCD 10、以下二次根式中是最简二次根式的是 ABCD 第二卷非选择题70分 二、填空题5小题,每题4分,共计20分 1、计算_ 2、李明的作业本上有六道题: , , ±2 ,请你找出他做
3、对的题是_填序号. 3、计算:_ 4、化简_ 5、化简:_ 三、解答题5小题,每题10分,共计50分 1、计算 1-12 218 2、计算:|3 3、1(-3)0-(- 4、先化简,再求值,其中x31,3x+3x-1 5、计算题 112 2(2- 318 430122+3 -参照答案- 一、单项选择题 1、D 【解析】 【分析】 依据合并同类项二次根式,二次根式的除法,以及平方差公式求解推断即可 【详解】 解:A、与不是同类二次根式,不能合并,故不符合题意; B、,计算错误,不符合题意; C、,计算错误,不符合题意; D、,计算正确,符合题意; 应选D 【点睛】 本题主要考查了合并同类二次根式
4、,二次根式的除法,平方差公式,解题的关键在于能够熟练掌握相关计算法则 2、C 【解析】 【分析】 首先依据数轴上a、b的位置,推断出、a的符号,然后再进行化简 【详解】 解:由图知:; ,; , 应选:C 【点睛】 本题考查了数轴,绝对值,二次根式的性质的应用,能正确去绝对值符号及化简二次根式是解题关键 3、B 【解析】 【分析】 依据最简二次根式的定义对各选项分析推断后利用排除法求解 【详解】 解:A、,不是最简二次根式,故本选项错误; B、是最简二次根式,故本选项正确; C、中被开方数中有分母,不是最简二次根式,故本选项错误; D、中被开方数中有分母,不是最简二次根式,故本选项错误; 应选
5、:B 【点睛】 本题考查最简二次根式的定义依据最简二次根式的定义,最简二次根式必须满足两个条件:1被开方数不含分母;2被开方数不含能开得尽方的因数或因式 4、C 【解析】 【分析】 依据题意先把每一个二次根式化成最简二次根式,然后再观察它们的被开方数是否相同 【详解】 解:3,6, 与是同类二次根式的是. 应选:C 【点睛】 本题考查同类二次根式,熟练掌握同类二次根式的定义并准确化成最简二次根式是解题的关键 5、D 【解析】 【分析】 直接利用二次根式混合运算法则分别推断得出答案 【详解】 解:、不能合并,故此选项不合题意; B、,故此选项不合题意; C、,故此选项不合题意; D、,正确 应选
6、: 【点睛】 此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键 6、D 【解析】 【分析】 依据二次根式运算法则逐项推断即可 【详解】 解:A. ,不符合题意; B. ,不符合题意; C. ,不符合题意; D. ,符合题意; 应选:D 【点睛】 本题考查了二次根式的运算,解题关键是熟练运用二次根式运算法则进行准确计算 7、D 【解析】 【分析】 依据最简二次根式的被开方数相同,列方程求解即可 【详解】 解:依据题意得:3m64m9, m3, m3, 应选:D 【点睛】 此题考查了二次根式的性质,解题的关键是依据题意正确列出方程 8、A 【解析】 【分析】 依据最简二次根式的定义逐项
7、推断即可得 【详解】 解:A、是最简二次根式,此项符合题意; B、不是最简二次根式,此项不符题意; C、不是最简二次根式,此项不符题意; D、不是最简二次根式,此项不符题意; 应选A 【点睛】 本题考查最简二次根式,解题的关键是掌握最简二次根式的定义:被开方数不含能开的尽的因数或因式,被开方数的因数数整数,因式是整式 9、D 【解析】 【分析】 依据最简二次根式的定义逐个推断即可 【详解】 解:A、,不是最简二次根式,故此选项不符合题意; B、,不是最简二次根式,故此选项不符合题意; C、,不是最简二次根式,故此选项不符合题意; D、是最简二次根式,故此选项符合题意; 应选D 【点睛】 本题考
8、查最简二次根式的定义依据最简二次根式的定义,最简二次根式必须满足两个条件:1被开方数不含分母;2被开方数不含能开得尽方的因数或因式 10、C 【解析】 【分析】 依据最简二次根式的概念:1被开方数不含分母;2被开方数中不含能开得尽方的因数或因式,进而分别推断得出答案 【详解】 解:A、原式=8,故此选项不符合题意 B、原式=2,故此选项不符合题意 C、是最简二次根式,故此选项符合题意 D、原式=,故此选项不符合题意 应选:C 【点睛】 本题主要考查了最简二次根式,正确掌握最简二次根式的定义是解题关键 二、填空题 1、 【分析】 依据二次根式的性质化简,再依据二次根式的加减运算即可 【详解】 解
9、: 故答案为: 【点睛】 本题考查了依据二次根式的性质化简,二次根式的加减运算,掌握以上知识是解题的关键 2、 【分析】 由立方根的含义可推断,由二次根式有意义的条件可推断,由 可推断,由算术平方根的含义可推断,由负整数指数幂的含义可推断,由同类二次根式的含义可推断,从而可得答案. 【详解】 解:,运算正确,故符合题意; 没有意义,不能运算,故不符合题意; 故不符合题意; 故不符合题意; 故不符合题意; 不是同类二次根式,故不符合题意; 故答案为: 【点睛】 本题考查的是立方根的含义,算术平方根的含义,二次根式的化简,负整数指数幂的含义,同类二次根式的含义,掌握以上基础概念及运算是解本题的关键
10、. 3、# 【分析】 由题可得,即可得出,再依据二次根式的性质化简即可 【详解】 解:由题可得, , , 故答案为: 【点睛】 本题主要考查了二次根式有意义的条件以及二次根式的性质与化简,掌握二次根式的性质是解决问题的关键 4、 【分析】 依据二次根式的性质解答即可求解 【详解】 解:3, ?30; 【点睛】 本题考查二次根式的性质与化简,掌握二次根式的性质是解题的关键 5、 【分析】 分子分母同时乘以即可; 【详解】 原式; 故答案是 【点睛】 本题主要考查了二次根式分母有理化,准确计算是解题的关键 三、解答题 1、1-35 【解析】 【分析】 1依据同底数幂乘法逆运算以及积的乘方逆运算进行
11、求解即可; 2依据二次根式的运算法则,立方根,绝对值等进行计算即可 【详解】 解:1解:原式= = = =-1× =-3 2解:原式=32 =32 =2 【点睛】 本题考查了同底数幂乘法逆运算以及积的乘方逆运算,二次根式的混合运算,立方根,绝对值等知识点,熟练掌握相关运算法则是解本题的关键 2、1- 【解析】 【分析】 利用绝对值,立方根的意义化简,合并同类二次根式即可得出结论 【详解】 解:原式23- 【点睛】 本题主要考查二次根式的加减运算及立方根,熟练掌握二次根式的加减运算及立方根是解题的关键 3、112;2 【解析】 【分析】 1依据零指数幂a0=1a0和负指数幂a-p=1a
12、 2现将二次根式化为最简二次根式,再合并即可 【详解】 解:(1)(?3)0?(?2)?2; 11 11 12 (2)12 =2 =22 【点睛】 本题考查了零指数幂和负指数幂的计算以及二次根式的化简,做题的关键是现将二次根式化为最简二次根式 4、3x+1,3 【解析】 【分析】 原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值 【详解】 解答:解:原式3(x+1)x-1÷ 3(x+1)x-1÷ 3(x+1)x-1÷ 3(x+1) 3x+1 当x31时,原式33-1+1 【点睛】 本题考查了分式的化简求值和二次根式的运算,解题关键是熟练运用分式运算法则进行化简,代入数值后准确进行计算 5、13;29-45;334 【解析】 【分析】 1直接利用二次根式的乘除法化简得出答案; 2利用完全平方公式展开,再合并得出答案; 3直接化简二次根式,再合并得出答案; 4直接利用零指数幂的性质以及乘法公式计算,再合并得出答案 【详解】 解:112 =12
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 肝移植术后免疫抑制方案
- 中国硼硅玻璃项目商业计划书
- 2025年中国食品甜味剂项目创业计划书
- 中国烟气脱硫项目创业计划书
- 2025年全球化的粮食安全问题与解决方案
- 2025年全球化的金融风险控制
- 2025年全球海洋酸化的生态影响
- 会计初级考试题型及答案
- 2025年中国透皮贴剂项目创业投资方案
- 中国丝绸专用洗涤剂项目投资计划书
- 新闻记者职业资格《新闻基础知识》考试题库(含答案)
- 运用PDCA提高吞咽障碍患者护理措施落实率
- 2024年大学军事理论课件:从传统到现代的转变
- 《丹参栽培技术》课件
- 阑尾粪石治疗与预防知识科普课件
- 2016建筑安装工程工期定额
- 桂小林 物联网技术导论(第1章 概念模型)
- 2025届百师联盟高三年级上册一轮复习联考(一)化学试卷
- 天地一体化信息网络技术研究白皮书 2023
- GB/T 44578-2024热塑性塑料隔膜阀
- 《国家学生体质健康标准》登记卡
评论
0/150
提交评论