




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第一章 解三角形一、选择题1己知三角形三边之比为578,则最大角与最小角的和为( )A90°B120°C135°D150°2在ABC中,下列等式正确的是( )AabABBabsin Asin BCabsin Bsin A Dasin Absin B3若三角形的三个内角之比为123,则它们所对的边长之比为( )A123B12 C149 D1 4在ABC中,a,b,A30°,则c等于( )A2BC2或D或5已知ABC中,A60°,a,b4,那么满足条件的ABC的形状大小 ( )A有一种情形B有两种情形C不可求出D有三种以上情形6在ABC中
2、,若a2b2c20,则ABC是( )A锐角三角形B直角三角形C钝角三角形D形状不能确定7在ABC中,若b,c3,B30°,则a( )AB2C或2D28在ABC中,a,b,c分别为A,B,C的对边如果a,b,c成等差数列,B30°,ABC的面积为,那么b( )AB1CD29某人朝正东方向走了x km后,向左转150°,然后朝此方向走了3 km,结果他离出发点恰好km,那么x的值是( )AB2C或2D310有一电视塔,在其东南方A处看塔顶时仰角为45°,在其西南方B处看塔顶时仰角为60°,若AB120米,则电视塔的高度为( )A60米B60米C60
3、米或60米 D30米二、填空题11在ABC中,A45°,B60°,a10,b 12在ABC中,A105°,B45°,c,则b 13在ABC中,A60°,a3,则 14在ABC中,若a2b2c2,且sin C,则C 15平行四边形ABCD中,AB4,AC4,BAC45°,那么AD 16在ABC中,若sin Asin Bsin C234,则最大角的余弦值 三、解答题17 已知在ABC中,A45°,a2,c,解此三角形18在ABC中,已知b,c1,B60°,求a和A,C19 根据所给条件,判断ABC的形状(1)acos
4、Abcos B;(2)20ABC中,己知ABC,且A2C,b4,ac8,求a,c的长第一章 解三角形参考答案一、选择题1B解析:设三边分别为5k,7k,8k(k0),中间角为 a,由cos a,得 a60°,最大角和最小角之和为180°60°120°2B 3B 4C 5C 6C 7C 8B解析:依题可得:代入后消去a,c,得b242,b1,故选B9C10A二、填空题115 122 132解析:设k,则k214 154 16三、解答题17解析:解三角形就是利用正弦定理与余弦定理求出三角形所有的边长与角的大小解法1:由正弦定理得sin Csin 45
5、6;·csin A×,a2,c,2,本题有二解,即C60°或C120°,B180°60°45°75°或B180°120°45°15°故bsin B,所以b1或b1,b+1,C60°,B75°或b1,C120°,B15°解法2:由余弦定理得b2()22bcos 45°4,b22b20,解得b±1又()2b2222×2bcos C,得cos C±,C60°或C120°,所以B75&
6、#176;或B15°b1,C60°,B75°或b1,C120°,B15°18解析:已知两边及其中一边的对角,可利用正弦定理求解解:,sin Cbc,B60°,CB,C30°,A90°由勾股定理a2,即a2,A90°,C30°19解析:本题主要考查利用正、余弦定理判断三角形的形状(1)解法1:由余弦定理得acos Abcos Ba·()b·()a2c2a4b2c2b40,(a2b2)(c2a2b2)0,a2b20或c2a2b20,ab或c2a2b2ABC是等腰三角形或直角三角形解法2:由正弦定理得sin Acos Asin Bcos Bsin 2Asin 2B2A2B或2Ap2B,A,B(0,p) AB或AB,ABC是等腰三角形或直角三角形(2)由正弦定理得a2Rsin A,b2Rsin B,c2Rsin C代入已知等式,得,即tan Atan Btan CA,B,C(0,),ABC,ABC为等边三角形20解析:利用正弦定理及A2C用a,c的代数式表示cos C;再利用余弦定理,用a,c的代数式表示cos C,这样可以
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《质量控制年终工作总结》课件
- 《课件设计能力的培养》
- 高压作业安全试题(含答案解析)
- 1月维修电工高级考试模拟题(附答案解析)
- 证券投资分析方法考核试卷
- 蛋品加工安全风险评估与控制考核试卷
- 设计在包装领域的环保策略考核试卷
- 《化学品事故应急》课件
- 学校元旦文艺晚会策划活动方案
- 2025年高质量轿车用深冲钢板项目发展计划
- 湖南省天壹名校联盟2025届高三5月适应性考试(化学)
- 村干部公务员试题及答案
- 浙江省杭州地区(含周边)重点中学2024-2025学年高一下学期期中考试化学试卷(含答案)
- 2025年北京市石景山区九年级初三一模语文试卷(含答案)
- 2025年人教版九年级中考道法社会热点专题 热点七 《黑神话:悟空》
- 2025年浙江省温州市中考一模语文试题(含答案)
- GB/T 12385-2025管法兰用垫片密封性能试验方法
- 油烟机清洗合同协议范本
- 宾馆卫生考试题及答案
- 习近平总书记安全生产重要论述2013.6-2025.2
- 绿色供应链管理策略试题及答案
评论
0/150
提交评论