第七章练习题及参考答案_第1页
第七章练习题及参考答案_第2页
第七章练习题及参考答案_第3页
第七章练习题及参考答案_第4页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第七章练习题及参考7.1表 7.10 中给出了 1970-1987 年期间美国的个人消费(PCE)和个人可支配收入(PDI)数据,所有数字的都是 10 亿(1982 年的价)。表 7.101970-1987 年美国个人消费(PCE)和个人可支配收入(PDI)数据估计下列模型:PCEt = A1 + A2 PDIt + mtPCEt = B1 + B2 PDIt + B3 PCEt -1 + ut(1) 解释这两个回归模型的结果。(2) 短期和长期边际消费倾向(MPC)是多少?【练习题 7.1 参考解答】 1)第一个模型回归的估计结果如下, Dependent Variable: PCEMeth

2、od: Least SquaresDate: 07/27/05Time: 21:41Sample: 1970 1987Included observations: 18VariableCoefficientStd. Errort-StatisticProb.C PDI-216.42691.00810632.694250.015033-6.61972367.059200.00000.0000R-squared Adjusted R-squaredS.E. of regression Sum squared resid Log likelihood Durbin-Watson stat0.9964

3、550.99623318.886285707.065-77.372691.366654Mean dependent varS.D. dependent var Akaike info criterion Schwarz criterionF-statistic Prob(F-statistic)1955.606307.71708.8191888.9181184496.9360.000000回归方程: PCEt = -216.4269 +1.008106PDIt年份PCEPDI年份PCEPDI年份PCEPDI19701492.01668.119711538.81728.419721621.917

4、97.419731689.61916.319741674.01896.619751711.91931.719761803.92001.019771883.82066.619781961.02167.419792004.42212.619802000.42214.319812042.22248.619822050.72261.519832146.02331.919842249.32469.819852354.82542.819862455.22640.919872521.02686.3(3269425) (0.015033)t =(-6.619723) (67.05920)R2 =0.99645

5、5F=4496.936第二个模型回归的估计结果如下,Dependent Variable: PCE Method: Least SquaresDate: 07/27/05Time: 21:51Sample (adjusted): 1971 1987Included observations: 17 after adjustmentsVariableCoefficientStd. Errort-StatisticProb.C PDIPCE(-1)-233.27360.9823820.03715845.557360.1409280.144026-5.1204366.9708170.2579970.

6、00020.00000.8002R-squared Adjusted R-squaredS.E. of regression Sum squared resid Log likelihood Durbin-Watson stat0.9965420.99604818.477834780.022-72.053351.570195Mean dependent varS.D. dependent var Akaike info criterion Schwarz criterionF-statistic Prob(F-statistic)1982.876293.91258.8298058.976843

7、2017.0640.000000回归方程: PCEt = -233.2736 + 0.9824PDIt - 0.0372PCEt -1(45.557) (0.1409)t = (-5.120) (6.9708)(0.1440)(0.258)R2 =0.9965F=2017.0642)从模型一得到 MPC=1.008;从模型二得到,短期 MPC=0.9824,由于模型二为自回归模型, 要先转换为分布滞后模型才能得到长期边际消费倾向,我们可以从库伊克变换倒推得到长期MPC=0.9824/(1+0.0372)=0.9472。7.2表 7.11 中给出了某地区 1980-2001 年固定资产投资 Y

8、与销售额 X 的资料。取阿尔蒙多项式的次数 m=2,运用阿尔蒙多项式变换法估计分布滞后模型:+ b0 Xt + b1 Xt -1 + b2 Xt -2 + b3 Xt -3 + b4 Xt -4 + utY表 7.11某地区 1980-2001 年固定资产投资Y 与销售额X 的资料(:亿元)年份YX年份YX198036.9952.8051991128.68168.129198133.6055.9061992123.97163.351198235.4263.0271993117.35172.547198342.3572.9311994139.61190.682198452.4884.790199

9、5152.88194.538198553.6686.5891996137.95194.657【练习题 7.2 参考解答】分布滞后模型: Y+ b0 Xt + b1Xt -1 + . + b4 Xt -4 + uts=4,取 m=2。假设 b0 = a0 , b1 = a0 +a1 +a2 , b2 = a0 + 2a1 + 4a2 ,b3 = a0 + 3a1 + 9a2,b4 = a0 + 4a1 +16a2(*)则模型可变为: Yt = a +a0 Z0t +a1Z1t +a2 Z2t + ut ,其中:Xt + Xt -1 + Xt -2 + Xt -3 + Xt -4 t -1 + 2

10、Xt -2 + 3Xt -3 + 4Xt -4Xt -1 + 4Xt -2 + 9Xt -3 +16Xt -4ZZ Z估计的回归结果如下,Dependent Variable: Y Method: Least SquaresDate: 25/02/10Time: 23:19Sample (adjusted): 1984 2001Included observations: 18 after adjustmentsVariableCoefficientStd. Errort-StatisticProb.C Z0 Z1Z2-35.492340.891012-0.6699040.1043928.19

11、28840.1745630.2544470.062311-4.3320935.104248-2.6327831.6753380.00070.00020.01970.1160R-squared Adjusted R-squaredS.E. of regression Sum squared resid Log likelihoodDurbin-Watson stat0.9846700.9813856.226131542.7059-56.196661.130400Mean dependent varS.D. dependent var Akaike info criterion Schwarz c

12、riterionF-statisticProb(F-statistic)121.232245.633486.6885176.886378299.74290.000000回归方程: Y = -35.49243 + 0.891012Z0t - 0.669904Z1t + 0.104392Z2ta = -35.49124,a0 = 0.89101,a1 = -0.66990,a2 = 0.10439由(*)式可得,198658.5398.7971997141.06206.326198767.48113.2011998163.45223.541198878.13126.9051999183.80232

13、.724198995.13143.9362000192.61239.4591990112.60154.3912001182.81235.142b0 = 0.89101, b1 = 0.32550, b2 = -0.03123, b3 = -0.17917, b4 = -0.11833由阿尔蒙多项式变换可得如下估计结果:Y35.49234 + 0.89101Xt + 0.32550Xt -1-0.03123Xt -2 -0.17917Xt -3 -0.11833Xt -47.3 利用表 7.11 的数据,运用局部调整假定或自适应预期假定估计以下模型参数,并解释模型的意义,探测模型扰动项的一阶自相

14、关性:1)设定模型= a + bX + uY *ttt其中Y * 为预期最佳值。t2)设定模型= abY *uX ettt其中Y * 为预期最佳值。t3)设定模型Y = a + bX + u*ttt其中 X * 为预期最佳值。t【练习题 7.3 参考解答】1)在局部调整假定下,先估计一阶自回归模型: Y = a+ b X + b Y+ u*0t1 t -1tt回归的估计结果如下,Dependent Variable: YMethod: Least SquaresDate: 25/02/10Time: 22:42Sample (adjusted): 1981 2001Included obser

15、vations: 21 after adjustmentsVariableCoefficientStd. Errort-StatisticProb.C XY(-1)-15.104030.6292730.2716764.7294500.0978190.114858-3.1936136.4330312.3653150.00500.00000.0294R-squared Adjusted R-squaredS.E. of regression0.9871250.9856956.193728Mean dependent varS.D. dependent var Akaike info criteri

16、on109.216751.785506.616515Sum squared residLog likelihood Durbin-Watson stat690.5208-66.473411.518595Schwarz criterion F-statisticProb(F-statistic)6.765733690.05610.000000回归方程: Y= -15.10403 + 0.629273X + 0.271676Yt-1tt(4.729450) (0.097819)(0.114858)t = (-3.193613) (6.433031) (2.365315)R2 =0.987125F=

17、690.0561DW=1.518595根据局部调整模型的参数关系,有a* = da ,b * = db , b = 1-d ,u = d u*01tt将上述估计结果代入得到:d = 1- b = 1- 0.271676 = 0.728324*1a = a * = -20.738064b = b=*00.864001dd故局部调整模型估计结果为: Y * = -20.738064 + 0.864001Xtt意义:该地区销售额每增加 1 亿元,未来预期最佳新增固定资产投资为 0.864001 亿元。运用德宾 h 检验一阶自相关:h = (1- d )n= (1- 1 ´1.518595)

18、21= 1.297281- nVar(b )*1-21´ 0.1148582221在显著性水平a = 0.05 上,查标准正态分布表得临界值 ha = 1.96 ,由于2= 1.96 ,则接收原假设 r = 0 ,说明自回归模型不存= 1.29728 < ha2h在一阶自相关问题。2)先对数变换模型,有lnY = lna + b ln X + u*ttt= a + b ln X + b lnY*+ u*在局部调整假定下,先估计一阶自回归模型: lnYt1t -1tt0回归的估计结果如下,Dependent Variable: LNY Method: Least SquaresD

19、ate: 25/02/10Time: 22:55Sample (adjusted): 1981 2001Included observations: 21 after adjustmentsVariableCoefficientStd. Errort-StatisticProb.C LNXLNY(-1)-1.0780460.9045220.2600330.1841440.1112430.087799-5.8543668.1310392.9616840.00000.00000.0084R-squared Adjusted R-squaredS.E. of regression Sum squar

20、ed resid Log likelihoodDurbin-Watson stat0.9937250.9930280.0470070.03977436.027421.479333Mean dependent varS.D. dependent var Akaike info criterion Schwarz criterionF-statisticProb(F-statistic)4.5598230.562953-3.145469-2.9962511425.2190.000000回归方程: ln Yt = -1.078046 + 0.904522 ln Xt + 0.260033ln Yt

21、-1(0.184144) (0.111243)t= (-5.854366) (8.131039)(0.087799)(2.961684)R2 =0.993725F=1425.219DW1=1.479333根据局部调整模型的参数关系,有ln a * = d ln a , b * = db , b = 1- d*01将上述估计结果代入得到:d = 1- b = 1- 0.260033 = 0.739967*1lna *db *lna = -1.45688b = 1.222380d= -1.45688 +1.22238ln X故局部调整模型估计结果为: ln Y *,也即ttY * = 0.2329

22、61X 1.22238tt意义:该地区销售额每增加 1%,未来预期最佳新增固定资产投资为 1.22238%。运用德宾 h 检验一阶自相关:h = (1- d )n= (1- 1.479333)21= 1.303131- nVar(b )*1- 21´ 0.0877992221在显著性水平a = 0.05 上,查标准正态分布表得临界值 ha = 1.96 ,由于2= 1.96 ,则接收原假设 r = 0 ,说明自回归模型不存在= 1.30313 < ha2h一阶自相关。Y = a * + b X + b Y+ u*0t1 t -1t3)在自适应预期假定下,先估计一阶自回归模型:

23、回归的估计结果如下,Dependent Variable: YMethod: Least SquarestDate: 25/02/10Time: 22:42Sample (adjusted): 1981 2001Included observations: 21 after adjustmentsVariableCoefficientStd. Errort-StatisticProb.C XY(-1)-15.104030.6292730.2716764.7294500.0978190.114858-3.1936136.4330312.3653150.00500.00000.0294R-squa

24、red Adjusted R-squaredS.E. of regression Sum squared resid Log likelihoodDurbin-Watson stat0.9871250.9856956.193728690.5208-66.473411.518595Mean dependent varS.D. dependent var Akaike info criterion Schwarz criterionF-statisticProb(F-statistic)109.216751.785506.6165156.765733690.05610.000000回归方程: Yt

25、 = -15.10403 + 0.629273Xt + 0.271676Yt -1(4.729450) (0.097819)(0.114858)t = (-3.193613) (6.433031) (2.365315)R2 =0.987125F=690.0561DW=1.518595根据局部调整模型的参数关系,有a* = da b * = db b = 1-du = d u*01tt将上述估计结果代入得到:d = 1- b = 1- 0.271676 = 0.728324*1a = a * = -20.738064b = b=*00.864001dd故局部调整模型估计结果为: Y * = -2

26、0.738064 + 0.864001Xtt意义:该地区销售额每增加 1 亿元,未来预期最佳新增固定资产投资为 0.864001 亿元。运用德宾 h 检验一阶自相关:h = (1- d )n= (1- 1 ´1.518595)221= 1.29728 在显著1- nVar(b )*1-21´ 0.114858221a = 0.05表 得 临 界 值 ha = 1.96 , 由 于2性 水 平上 , 查 标 准 正 态 分 布= 1.29728 < ha = 1.96 ,则接收原假设 r = 0 ,说明自回归模型不存在一阶自相关。2h7.4 表 7.12 给出某地区各年

27、末货币流通量 Y,商品零售额 X1、城乡居民储蓄余额 X2 的数据。表 7.12 某地区年末货币流通量、商品零售额、城乡居民储蓄余额数据(:亿元)年份年末货币商品零城乡居民储年份年末货币商品零城乡居民利用表中数据设定模型: Y = a + b X + b X+ m*t1 1t2 2ttY = a XXeb 1b 2 u*tt1t2t其中,Y * 为长期(或所需求的)货币流通量。试根据局部调整假设,作模型变换,估计并检验t参数,对参数意义做出解释。【练习题 7.4 参考解答】1)在局部调整假定下,先估计一阶自回归模型:Y = a* + b X+ b X*t01t1回归的估计结果如下:Depend

28、ent Variable: YMethod: Least SquaresDate: 26/02/10Time: 15:56Sample (adjusted): 1954 1985Included observations: 32 after adjustments流通量Y售额X1蓄余额X2流通量Y售额X1储蓄余额X2195310518786764163197038500240332261561954488819714710027453430944195556891972572002991973596119567406197360000314006396671957915619746250031

29、895443320195810193197564500336015461841959225581976680003529244831119602903619776300037811553313196141472197866000415830612901962348261979760004520327003319633000019808500051254392800196424300198190000547956109707196529300198210100059108813379919663390019831000006464271643141967361001984160000733162

30、2011991968396001985192000919045277185VariableCoefficientStd. Errort-StatisticProb.C X1 X2Y(-1)6596.2280.0474510.2748380.4052754344.0780.0396100.0905340.1872201.5184421.1979403.0357362.1646990.14010.24100.00510.0391R-squared Adjusted R-squaredS.E. of regression Sum squared resid Log likelihoodDurbin-

31、Watson stat0.9672470.9637387705.6041.66E+09-329.66002.109534Mean dependent varS.D. dependent var Akaike info criterion Schwarz criterionF-statisticProb(F-statistic)55355.9740464.9020.8537521.03697275.62670.000000回归方程: Yt= 6596.228 + 0.047451X1t + 0.274838X 2t + 0.405275Yt -1(4344.078) (0.039610)(0.0

32、90534)t = (1.518442) (1.197940)(3.035736)(0.187220)(2.164699)R2 =0.967247F=275.6267DW=2.109534根据局部调整模型的参数关系,有lna* = d lna, b= db ,b= db ,b =1-d*00112将上述估计结果代入得到:ln Y ln Y = a* +b ln X + b ln X+ b ln Yd =1- b =1- 0.405275 = 0.594725*t -1tt01t12t22a = a * =b =b =11091.223670.079780.462126bb* 0 1 d0d1d

33、故局部调整模型估计结果为:Y * = 11091.22367 + 0.07978X + 0.462126Xt1t意义:在其他条件不变的情况下,该地区2t商品零售额每增加 1 亿元,则预期年末货币流通量增加 0.07978 亿元。同样,在其他条件不变的情况下,该地区城乡居民储蓄余额每增加 1 亿元,则预期年末货币流通量增加 0.462126 亿元。lnY = lna + b ln X+ b ln X+ u*2)先对数变换模型形式,t11t22tt在局部调整假定下,先估计一阶自回归模型:ln Y = a* + b ln X + b ln X+ b lnY+ u*2t2t -1tt01t1回归的估计

34、结果如下:Dependent Variable: LNYMethod: Least SquaresDate: 26/02/10Time: 16:12Sample (adjusted): 1954 1985Included observations: 32 after adjustmentsVariableCoefficientStd. Errort-StatisticProb.C LNX1 LNX2LNY(-1)0.6443330.2062300.1801680.5314451.6778880.2555570.1549130.1092600.3840140.8069841.1630314.86

35、40490.70390.42650.25460.0000R-squared Adjusted R-squaredS.E. of regression Sum squared resid Log likelihoodDurbin-Watson stat0.9689590.9656330.1246290.43490523.367781.914829Mean dependent varS.D. dependent var Akaike info criterion Schwarz criterionF-statisticProb(F-statistic)10.700880.672279-1.2104

36、86-1.027269291.34580.000000回归方程: ln Yt = 0.644333 + 0.20623ln X1t + 0.180168ln X 2t + 0.531445ln Yt -1(1.677888) (0.255557)t = (0.384014) (0.806984)(0.154913)(1.163013)(0.531445)(4.864049)R2 =0.968959F=291.3458DW=1.914829根据局部调整模型的参数关系,有lna = d lna ,b= db ,b = dbb =1-d*,00112将上述估计结果代入得到:d =1- b =1- 0

37、.531445 = 0.468555*2lna *db *b *lna = 1.375149 b0 = 0 = 0.44014b1 = 1 = 0.384518dd故局部调整模型估计结果为:ln Y * = 1.375149 + 0.44014 ln X + 0.384518 ln Xt1t2t意义:货币需求对商品零售额的长期弹性为:0.44104;货币需求对城乡居民储蓄余额的长期弹性为0.384518。7.5 考虑如下回归模型:Y= -3012 + 0.1408X + 0.2306 Xt -1ttt =(-6.27) (2.6)R2 = 0.727其中,y 为通货膨胀率,x 为生产设备使用率

38、。(4.26)1) 生产设备使用率对通货膨胀率的短期影响和总的影响分别是多大?2) 如果库伊克模型为Yt = b1 + b2 Xt + b3Yt -1 + mt ,你怎样得到生产设备使用率对通货膨胀率的短期影响和长期影响?【练习题 7.5 参考解答】1)该模型为有限分布滞后模型,故生产设备使用率对通货膨胀的短期影响为 0.1408,总的影响为 0.1408+0.2306=0.3714。YY2 ) 利 用 工 具 变 量 法 , 用来 代 替进 行 估 计 , 则 库 伊 克 模 型 变 换 为t -1t -1Y = b + b X + b Y+ u 。若原先有Y= a + a X + a X,

39、则需估计的模型为t12t3t -1t12t3 t -1tYt = b1 + a1 + (b2 + a2 )Xt + (b3 + a3 )Xt -1 + ut ,所以生产设备使用率对通货膨胀的短期影响+ a2,总的影响为b2 + a2 + (b3 + a3 ) 。为 b2表 7.13 中给出了某地区消费总额 Y 和货币收入总额 X 的年度资料。7.6表 7.13某地区消费总额 Y(亿元)和货币收入总额 X(亿元)的年度资料(:亿元)分析该地区消费同收入的关系1) 做Yt 关于 Xt 的回归,对回归结果进行分析;2) 建立适当的分布滞后模型,用库伊克变换转换为库伊克模型后进行估计,并对估计结果进行

40、分析。年份XY年份XY1975103.16991.1581990215.539204.751976115.07109.11991220.391218.6661977132.21119.1871992235.483227.4251978156.574143.9081993280.975229.861979166.091155.1921994292.339244.231980155.099148.6731995278.116258.3631981138.175151.2881996292.654275.2481982146.936148.11997341.442299.2771983157.715

41、6.7771998401.141345.471984179.797168.4751999458.567406.1191985195.779174.7372000500.915462.2231986194.858182.8022001450.939492.6621987189.179180.132002626.709539.0461988199.963190.4442003783.953617.5681989205.717196.92004890.637727.397【练习题 7.6 参考解答】1)做Yt 关于 Xt 的回归,回归的估计结果如下,Dependent Variable: Y Method: Least SquaresDate: 05/03/10Time: 15:24Sample: 1975 2004Included observations: 30VariableCoefficientStd. Errort-StatisticProb.CX27.765940.8077317.9450830.0228403.49473335.365420.00160.0000R-squared Adjusted R-squaredS.E. of regression Sum squared resid Log likelihoo

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论