




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、九年级数学中考第二轮复习一观察归纳问题北师大版【本讲教育信息】1 .教学内容:专题一:观察归纳问题2 .知识要点:通过观察、实验、归纳、类比等活动获得数学猜想,并能对所作出的猜想进行验证,能 进行一些简单的严密的逻辑论证,并有条理地表达自己的证明.它是近几年各地中考所展示的一种新题型,这类试题形式多样,取材广泛,可增加试题的灵活性和趣味性,其发展前景 非常广阔,分析题中提供的信息,有利于提高学生分析、解决实际问题的能力.3 .考点分析:在近几年的中考试题中,图表信息的规律性问题又有所增加,涉及的范围也更广泛, 提供的信息除文字表述外,往往还辅以图形,图像和表格,是如今中考命题的热点题型.【典型
2、例题】题型一观察数式规律通常给定一些数字、代数式、等式或者不等式,然后猜想其中蕴含的规律.一般解法是 先写出数式的基本结构,然后通过横比(比较同一等式中不同部分的数量关系)或纵比(比 较不同等式间相同位置的数量关系)找出各部分的特征,改写成所要求的格式。例1.观察按下列顺序排列的等式:9X0+1=1; 9X1 + 2=11; 9X2+3=21; 9X3 + 4=31; 9X4+5=41;猜想:第 n 个 等式(n为正整数)用n表示,可以表示成 .解析:根据以上各等式所呈现出来的特征,可以猜想这个等式的基本结构形式为:9X一个数+另一个数=结果.其中,“另一个数”就是等式的序号 n; “一个数”
3、比它小1,即为 n1;结果的个位为1,个位以前的数字等于“一个数”n1,所以结果表示为10 (n1)+ 1.因此,这个等式为: 9 (n1) +n=10 (n 1) +1.这个猜想的结果是否正确,还可 以用整式运算的知识加以验证.等式的左边=9n9 + n=10n9;等式的右边二10n10 +1=10n-9.所以,等式的左边=等式的右边.说明所列等式成立.例2.如下表所示,是按一定规律排列的方程组和它的解的对应关系,若方程组自左至右 依次记作方程组 1、方程组2、方程组3、方程组n.(1)将方程组1的解填入表中.方程组x+ y= 1x y= 1x+ y= 1x 2y = 4x+ y= 1x 3
4、y= 9对应方程组 的解x =x= 2y=- 1x= 3y=- 2x=y =y=(2)请依据方程组和它的解的变化规律,将方程组n和它的解直接填入表中;(3)若方程组x+y1的解是x10 求m的值,并判断该方程组是否符合 (2)x my= 16y= 9中的规律?分析:对于(1)直接解方程组即可;(2)中既要观察归纳方程组的规律,又要观察归用心 爱心专心纳方程组的解的规律.解:(1)x= 1y= 0 '(2)x+ y= 12 ,x ny= n(3)因为方程组x+ y = 1x my= 16的解是x= ny= 1 nx= 10y = 9所以有10+9m=16,解得m=2.3显然该方程组不符合
5、(2)中的规律.题型二观察图形规律根据一组相关图形的变化规律,从中总结通过图形的变化所反映的规律.其中,以图形为载体的数字规律最为常见.猜想这种规律,需要把图形中的有关数量关系列式表达出来, 再对所列式进行对照,仿照猜想数式规律的方法得到最终结论.例3.观察下图所示的点阵图和相应的等式,探究其中的规律: 1 = 12; 1+3= 22; 1+3+5= 32; (1)在和后面的横线上分别写出相应的等式;(2)通过猜想写出与第 n个点阵相对应的等式.分析:(1)本题图形中所反映出来的数字关系式已经列出三个,以它们为例,填写后两个.易得 1+3+5+7=42; 1 + 3+5 + 7+9=52. (
6、2)可以猜想:1 + 3 + 5+ + ( 2n1) = n2.解:(1) 1+3+5+7=42; 1 + 3+5+7+9=52.(2) 1 + 3+5+ + ( 2n1) =n2.题型三猜想数值结果当在一些条件改变的前提下,结果的数值不变,或者其变化呈现出某种特征时,可以猜想在新条件下,数值仍然不变,或者仍然按照原来的特征变化,依此猜想到结果的数值.例4.完成下列两题:(1)如图所示,直线 y=x+ 1与y轴相交于点A1,以OA1为边作正方形 OA1B1C1,记 作第一个正方形;然后延长C1B1与直线y=x+ 1相交于点A2,再以C1A2为边作正方形C1A2B2c2,记作第二个正方形;同样延
7、长C2B2与直线y=x+1相交于点A3,再以C2A3为边作正方形c2A3B3c3,记作第三个正方形;依此类推,则第n个正方形的边长为 .分析:首先计算前几个正方形的边长,然后再寻找、总结规律, 推测第n个正方形的边 长.根据题意点 Ai的坐标是(0, 1),即第一个正方形的边长 OAi=1;当x (OCi) =1时, y=2,则点A2 (1, 2),即第二个正方形的边长 CiA2=2,当x (OC1+C1C2) =3时,y=4,所 以点A3 (3, 4),即第三个正方形的边长 C2A3=3,,依此类推,第n个正方形的边长是 n.解:n(2)下面是按第1个数:第2个数:第3个数:121314定规
8、律排列的一列数:1(1 + 7);一 1(1 + 7)一 1(1 + 三)(1 +(1 +(-1)3(-1)32一)2一)(1 +(1 +(-1) 4(-1) 43一);3一)(1 +(-1)4(1)5-)(1+膏);第n个数:一 1(1 + -2-) (1 +(1)2(1)3(- 1)2n 1(1+T)(1+y-).那么,在第10个数、第11个数、第A.第10个数 B.第11个数12个数、第13个数中,最大的数是(C.第12个数 D.第13个数分析:通过观察发现,第 n个数的表示题目已给出,代入得第10个数是:(1)2(1)3(-1)191十 3)(1+ 一)(1+一)(1+室)=111(1
9、_工)=± _1x4x5x.x20x=11'20, 11 2 3 4 5 619 20 11 2-(1-1) (1 + 1)(1-1) 234- 1 1 10+ 11(1+在9 1©依照这一规律,第11个数是:工1024会第12个数是:13 2春第13个数是:111214 2287再比较这4个数的大小即可.解:A评析:本题规律明显,但计算时技巧性较强,在比较四个数的大小时,用常规的比较方法,像通分、把分子变得相同等都会带来大量繁杂的计算.比较4、工-1、J、T7-11 2 12 2 13 2 1412更快捷.例5.已知直线In: y=nn/x+n (n是不为零的自然
10、数).当n=1时,直线11: y=-2x+1与x轴和y轴分别交于点 A1和B1,设4A1OB1 (其中O是平面直角坐标系的原点)的面积 、,一31 一为Si;当n=2时,直线l2: y= 2x+ 2与x轴和y轴分别父于点 A2和B2,设A2OB2的面积为S2,,依此类推,直线In与x轴和y轴分别交于点 An和Bn,设 AnOBn的面积为Sn.(1)求 AiOBi的面积s;(2)求 S1+S2+S3+ S6 的值.1解:(1)令 x=0,贝 U y=1 ;令 y=0,贝 U x=2.SiJx 1x 1=1.2 24-1 1S6=2X6X二7'一1 1 11 1 1(2)同(1), S2=
11、1x-x-, S3=1x-x-,2 2 32 3 4-Si + S2+S3+-+ S=1 (lUEx1+1X1)2223346 711、/ 11、/ 11、/ 1 1、=2(2)+(2-3)十(3-4)+( 67)11=1(7)3=.7评析:一次函数的图像及性质是中考的一个重要考点,熟记相关性质是正确解题的关键.本考题巧妙地借助一次函数与两坐标轴围成的图形面积,将分数技巧计算寓于其中, 在考查一次函数基本性质的同时,也考查了学生发现规律、巧妙计算的能力,一举三得.题型四:归纳数量关系数量关系的表现形式多种多样,这些关系不一定就是我们目前所学习的函数关系式.在猜想这种问题时,通常也是根据题目给出
12、的关系式进行类比,仿照猜想数式规律的方法解答.例6. (1)如图,在梯形 ABCD中,AB /CD, AB=b, CD=a, E为AD边上的任意一点, EF / AB ,且EF交BC于点F,某学生在研究这一问题时,发现如下事实:当器=1时,有EF=,;当器=2时,有EF=%2b;当DE=3时,有EF=%3b.当D1=k时,参照2 AE3AE4 AE上述研究结论,请你猜想用k表示DE的一般结论,并给出证明;(2)现有一块直角梯形田地 ABCD (如图所示),其中AB/CD, AD ±AB , AB=310 米,DC=170米,AD=70米.若要将这块地分割成两块,由两农户来承包,要求这
13、两块地均 为直角梯形,且它们的面积相等.请你给出具体分割方案.分析:猜想的东西未必完全正确,鉴于此,本题按照“猜想一一证明一一应用”的思路 来设计题目,体现了知识的产生过程、科学论证和应用价值.解:(1)猜想出关系式:EF=a±b.1 + kH.证明:过点E作BC的平行线交 AB于G,交CD的延长线于. AB/CD, AGE DHE ,,碧二器,又 EF/ AB / CD, CH=EF=GB , DH=EF -a, AG= b-EFG(2)在AD上取一点E,作EF/ AB交BC于点F,、几DE 皿设第=k,贝U EF=AE170+310kDE=70k1 + k'若S 梯形DC
14、FE=S梯形ABFE ,贝U S梯形ABCD =2S 梯形DCFE,70k1Tk'梯形ABCD、DCFE为直角梯形,170+ 310X 70=2x1 (170+2L210b X2 21 k化简得 12k2- 7k- 12=°,解得:ki=4, k2=4(舍去),70kDE=1 k=40所以只需在 AD上取点E,使DE=40米,作EF / AB (或EFXDA),即可将梯形分成 两个直角梯形,且它们的面积相等.【方法总结】解观察归纳问题,应根据已有的图像与文字提供的信息或解题模式,进行适当的正向迁移和归纳推理,并通过计算或证明解决实际问题.解题步骤一般是:(1)观察图像和所给出
15、的数据,获取有效信息;(2)对已获信息进行加工整理,理清各变量之间的关系;(3)选取适当的数学工具,通过合理建模解决实际问题.【预习导学案】(专题二:实验操作问题).预习导学1 .已知一个三角形的两条边长分别是1cm和2cm, 一个内角为40° .(1)请你借助下图画出一个满足题设条件的三角形;(2)你是否还能画出既满足题设条件,又与(1)中所画的三角形不全等的三角形?若能,请你用“尺规作图”作出所有这样的三角形;若不能,请说明理由;(3)如果题设条件改为“三角形的两条边长分别是3cm和4cm, 一个内角为40。”那么满足这一条件,且彼此不全等的三角形共有 个.友情提醒:请在你画的图
16、中标出已知角的度数和已知边的长度.“尺规作图”不要求写作法,但要保留作图痕迹.2 .小华将一直角边长为 1的一个等腰直角三角形纸片(如图 1),沿它的对称轴折叠 1次后得到一个等腰直角三角形(如图2),再将图2的等腰直角三角形沿它的对称轴折叠后得到一个等腰直角三角形 (如图3),则图3中的等腰直角三角形的一条腰长为 n次后,所得到的等腰直角三角形(如同上操作,若小华连续将图1的等腰直角三角形折叠图n+1)的一条腰长为第n次折叠-图n+1.反思1 .裁剪、折叠、拼图等动手操作问题和图形变换有何关系?2 .常见的尺规作图有哪些?【模拟试题】(答题时间:50分钟)一.选择题1.如图,小陈从。点出发,
17、前进5米后向右转20° ,再前进5米后又向右转20° , 这样一直走下去,他第一次回到出发点。时一共走了()A. 60 米B. 100 米 C. 90 米D. 120 米O20°- 202.某校生物教师李老师在生物实验室做试验时,将水稻种子分组进行发芽试验;第1组取3粒,第2组取5粒,第3组取7粒,即每组所取种子数目比该组前一组增加2粒,按此规律,请你推测第 n组种子数()A. 2n+1B. 2n1C. 2nD. n+2,一-, 9 2n +11 一 /十 A一,*3.对于每个非零自然数n,抛物线y=x2-n(n + 1)x+n(n+1)与x轴父于An、Bn两点,
18、以A nBn表示这两点间的距离,则 A 1B1 + A2B2+ A2009B2009的值是()A 2009B 2008C 网D 20092008200920092010*4.古希腊著名的毕达哥拉斯学派把1、3、6、10、这样的数称为“三角形数”,而把1、4、9、16、这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作是两个相邻的“三角形数”之和.下列等式中,符合这一规律的是()A. 13=3+10 B. 25=9 + 16 C. 36=15 + 21 D. 49=18 + 311.下列图案是晋商大院窗格的一部分,其中代表窗纸上所贴的剪纸,则第4 = 1+39=3+
19、616=6+10.填空题n个图2 .用正三角形和正六边形按如图所示的规律拼图案,即从第二个图案开始,每个图案都 比上一个图案多一个正六边形和两个正三角形,则第n个图案中正三角形的个数为.(用含n的代数式表示)3 .如图,图,图,图,是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律,第 5个“广”字中的棋子个数是 ,第n个“广”字中的棋子个数是4 .观察下列等式:(1)4212=3X5;(2 )52 22=3 X 7;(3)62-32=3 X 9;(4)72-42=3X11;则第n (n是正整数)个等式为 .5.将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆,第2个图形有
20、10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,依此规律,第个图形有 个小圆.。O。O。 。OOO O O Oo o o 0O O O OOOOO。O。OO O O O O。O Q。OO第1个图形第2个图形第3个图形第4个图形*6.正整数按下图的规律排列.请写出第20行,第21列的数字第一列第二列第三列第四列第五列第一行1251017!tII第二行4361118III第三行9871219I I第四行1615141320第五行25242322 21*7.如图,已知 RtAABC中,AC=3 , BC=4,过直角顶点 C作CA1,AB,垂足为 A1,再 过A1作A1CBC,垂足为C1,
21、过C1作C1A2,AB,垂足为 A2,再过A2# A2C2XBC,垂 足为C2,,这样一直作下去,得到了一组线段 CA1, A1C1, C1A2,,则CA1=, C4A 5_A5C5=-A*8.把一张纸片剪成 4块,再从所得的纸片中任取若干块,每块又剪成4块,像这样依次地进行下去,到剪完某一次为止.那么2007, 2008, 2009, 2010这四个数中,可能是剪出的纸片数.三.解答题1.观察下列等式:1X1=1-1 2X2=2 2 3X3=3 3,223344(1)猜想并写出第n个等式;(2)证明你写出的等式的正确性.2.已知x为实数,v、z与x的关系如表格所示:Xyz330X 3+702
22、X1X8430X4+702X2X9530X 5+702X 3X 10630X6+702X 4X 11根据上述表格中的数字变化规律,解答下列问题:(1)当x为何值时,y=43? (2)当x为何值时,y=z?*3.在下图中,每个正方形由边长为1的小正方形组成:n=1n=2n=3(1)观察图形,请填写下列表格:止方形边长1357n (奇数)监色小止方形个数止方形边长2468n (偶数)监色小止方形个数(2)在边长为n (n> 1)的正方形中,设蓝色小正方形的个数为P1,白色小正方形的个数为P2,问是否存在偶数n,使P2=5P1?若存在,请写出n的值;若不存在,请说明理由.1. C1小陈的行走路
23、线是一个外角为20°的正多边形,360° +20° =18, 5X 18=90 (米)】2. A,11所以AnBn=i一不_ , c 2n+11-113. D【当 y=0 时,x nnnx+rnnr=0, 解倚 x1=n' x2=nzi=(-7),所以 A1B1+A2B2+ A2009B2009= ( 1 4) + ( ) + ( -) + (。二门n n+ 122 33 420092010=1 12009,=】 2010 20104. C【"三角形数”的排列规律是1, 3=1+2, 6=1 +2+3, 10=1 + 2+3 + 4,.第n个-1
24、为1 + 2 + 3+ n)n (n+1). “正方形数”的排列规律是:1=12, 4=22, 9=32, 16=42,.第1n个是n2.依此验证,显然选项 A不正确;当n=5时,52=25,第5个“三角形数”是2*5 X (5+1) =15,第4个“三角形数”是10,即52=10+15,所以选项B不正确;同理,62=15 + 21, 72=21+28,所以选项C正确】二.填空题1. 3n+22. 2n+ n3. 15, 2n+51图中棋子个数是 1 + 2X3=1 + 2 (1+2),图中棋子个数是 1 +2X4=1 + 2 (2+2),图中棋子个数是 1 + 2X5=1+2 (3+2),,按照这种规律,第 n个图中棋 子个数是1 + 2 (n + 2) =2n + 5,所以第5个图中棋子个数是 15】4. (n + 3) 2n2=3X ( 2n+3)5. 46【通过观察得出规律:第1个:4+1X2;第2个:4+ 2X3;第3个:4+3X4;第4 个:4 + 4X5;;第 6 个:4+6X7=46 个】6. 420【要解此题方法较多,较简单的规律是:第1行,第2列的数字是2=1 X 2;第2行,第3列的数字是6=2X3;第3行
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论