




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、实用标准文案图形的变换一、学情分析初三学生在初二阶段就已经学过旋转这一节内容,大多数学生对旋转的相关特征应该还是比较熟悉的,同时在旋转中出现的一些相关的核心知识点(如正方形的性质)已经在前阶段的复习中涉 及到,大多数学生已经初步具备一定的解决问题的综合能力.鉴于此课例习题既有基础性还有一定的综合性,故对于学生数学基础相对较好的班级可以安排在中考第一轮“基础+综合”复习阶段,而对于学生数学基础一般的班级则可以安排在中考第二轮“综合+基础”专题复习阶段.放在第一轮基础复习,只需解决两个例题即可;放在第二轮专题复习,可分成两个课时进行为好,以满足各个层次 学生的不同需求.二、教学任务和目标通过本课的
2、学习,学生能够进一步体悟解决双正方形旋转问题的核心知识点是旋转的特征(性质),即旋转角等于对应边的夹角;旋转前后的图形是全等形(对应边相等,对应角相等).学生能够进一步理解并能熟练运用旋转的特征解决双正方形旋转的实际问题.同时,还要让学生通过双正方形的旋转领悟旋转过程中的变与不变,变就有可能存在函数关系,不变就可能存在相等关系(或定 值),这就是旋转问题展现给学生的数学本质的魅力,也是数学所特有的哲学价值 .数学学科的本位,数学学习的本质,数学思维的本色,在本节课的复习中可以得到充分的体现三、学法点拨解决旋转问题的基本策略是“化静为动,以静制动”.所谓“化静为动”,即要搞清楚整个旋转过程中哪些
3、元素(如边、角)发生了变化,哪些元素仍然没变,有时还要通过特殊位置图形的特征 来判断不变的元素.所谓“以静制动”,即要把旋转过程中的各种图形的位置情况作为静止的图形进 行研究,接下来的计算与证明和原先没啥两样,只不过赋予了旋转的背景而已.如果学生能够破译旋 转背后的“密码”,那么以旋转为背景的几何问题就迎刃而解了.四、教学过程设计(一)预学尝试如果条件许可,可以提前一天把3个例题的题设(教师预设的几个问题在预学稿上是隐去的)和图形发给学生预学, 让学生根据已有的经验回家自主提出问题,在学案稿上写好.一方面把学习的主动权还给学生,激发学生学习的内在活力,方便在课上师生共同交流预学尝试提出的问题;
4、另一方面让教师能够及时了解学情,便于及时调整预设,以取得更好的学习效果.(二)互动反馈由于学生预学尝试的原因,学困生对 3个例题的题设有了初步的了解,中等生不仅了解题目的题 设,而且会提出一些简单的问题(猜想),学优生则不仅能够提出一些问题(猜想),甚至可以有自己的方法来证明自己的猜想.故在本课堂中的学情是极其丰富的,关键在于教师如何把握与引导, 通过生生和师生之间的互动反馈,让各层次的学生通过复习都能够获得不同的进步,品尝成功的快乐例题1 (中考试题改编):把正方形ABC啜着点A按顺时针方向旋转a (0 a &90° )得到正方形AEFG边FG与BC交于点H.(1)试问图中
5、有哪些相等的线段吗 ?请先观察猜想,然后再证明你的猜想;(2)连结DG BE,猜想DG与BE的关系,并证明;(3)连结BG CF,猜想BG与CF的关系,并证明;(4)若AD= 3, / DAG= 30° ,则你能求出阴影部分的面积吗?AE功能分析:本题的设计是一个正方形绕着另一个正方形的对角线的端点旋转,是涉及旋转相关知识的一个基础问题,学生曾经或多或少经历过类似的问题,情景比较熟悉,前3题都是比较基础的问题,学生比较容易上手,也有利于学生快速进入旋转情景中.(1)、(2)主要引导学生观察、猜想旋转过程中形成的哪些线段相等,哪些角相等(双正方形自身的边、角相等则是显而易见的,也是非常
6、重要 的条件),并能寻求证明的方法与途径(全等,等腰三角形知识);(3)建立在(1)的基础上主要考查学生旋转过程中形成的线段存在平行关系,并能力求通过等腰三角形的性质或相似的判定来证明;(4)是一个比较综合的问题,建立在(1)的基础上,考查学生转化为解直角三角形及其面积的问题.学法预设:笔者在这里设计了 4个问题,既有学生熟悉的问题,也有变式逐步提高的问题,对绝大多数学 生来说应该都能解决.4个问题涉及旋转、全等、相似、等腰三角形、平行、解直角三角形、正方形 等各种基础知识点,通过旋转把这些知识点串了起来 .通过“化静为动”的策略找到/ DAGh BAE / ADCN AGHh ABCh AE
7、F, AD=AG=AB=AEGF=BC 通过“以静制动”发现等腰4HGB CHF AGH叁' AB晔等.第1问,学生很容易猜想 GH=BH CH=HF如何证明?对于证明GH=BH估计学生会有两种思路. 一是连结BG利用等腰三角形的性质和判 定来证明;二是连结 AH,利用 AG卑4ABH来证明.第2问,学生根据旋转的特征,利用 人口摩 AE由艮容易证明DG=BE甚至于证明DGL BE此 问宜让学生自主解决.第3问,学生可能也会有两种思路.一是利用第1问的结论可知 CHF与GHEBTB是等腰三角形, 再利用等腰三角形顶角相等从而底角相等,从而易证BG/ CF;二是利用 CHM4GH眯证明平
8、行,这一点学生可能不一定想到,因为方法一简便易行第4问,则是建立在第1问得基础上,先是要引导学生把阴影部分的面积转化为求四边形GABH的面积,再转化为 ABH的面积(或者先求直角梯形 DAHC再求直角三角形 AGH的面积即可),下面 的问题就单纯是解直角三角形了.关键的问题是两次转化思想的自觉运用,这对于学困生还是有困难的,对中等及以上学生不是难事 .答案精要:(1) GH=BH CH=HF(双正方形自身的边、角相等除外);连接BG由正方形的性质可知:AG= AR /AGH= Z ABH= 90° ,AGB= / ABGAGH- / AGB= / ABH- / AB川 / HGB=
9、/ HBG,GH=BH 又GF= BC, . CH=HF.(2) DG=BE DGL BE (证明DGL BE可在学生数学基础相对较好的班级进行);由旋转的特征可知:AD= AG= AB= AE、/ DAG= /BAEAD(G ABEDG=BE.(3) BG=CF证 CHF与GHBtB是等腰三角形,利用两个等腰三角形的顶角相等从而底角相 等可得到平行.(4) 9-34;先证 AG阴 ABH故/ GAH= / BAH= 30° ,利用解直角三角形的知识求得Saag- S»b 3p,因而阴影部分的面积为 9-3 3.例题2(中考试题改编):正方形ABCD OEFGtB是边长为4
10、的正方形,其中点。为正方形ABCD 的对角线AC的中点.正方形OEF磷点。顺时针旋转a (0 ° WaW 900 ).(1)在旋转的变化过程中,试猜想图中有哪些结论?(2)连结MN GE猜想它们的关系并证明;(3)你能求出阴影部分的面积吗?试探索阴影部分的周长有无变化;(4)设CM= x, AMON勺面积为y,试写出y与x的函数关系式.功能分析:本题是例1基础上的延伸与拓展,两题共同的特征是旋转中心都在一个正方形的对角线上,不同之处在于此题设计的是一个正方形绕着另一个正方形的对角线的中点旋转,也是涉及旋转相关知 识的一个常见问题,学生对此旋转情景也是比较熟悉的.这种具有相似背景的例题
11、设计避免了学生在 复习时思维跨度过大,有利于学生的思维聚焦在旋转核心知识(即旋转特征)的复习巩固上.同时由于学生已经有了例题 1的基础,故本题(1)设计成了一个开放型问题,一开始只给出题设(条件),让学生自主来设计问题,也可以合作编题,让学生来猜想在旋转的变化过程中有哪些不变的量?源于学生已有的知识积淀,估计学生通过自主探究与合作交流会提出诸如此类的问题或猜想(发现旋 转变化中不变的量):1、猜想CM=BN BM=AN并证明;2、猜想OM=ONMG=NE并证明;3、猜想阴影部分的面积为定值 4;(阴影部分的图形在变,但面积不变)4、猜想BM+BN=4BM与BN的和是定值,两者又存在函数关系)本
12、题预设的(2)、(3)题都是建立在 (1)中学生和教师的几个猜想的基础上的,归根到底都是考查学生利用全等和相似的知识来解决问题.并且第(3)题把问题延伸到旋转过程中周长有无变化,显然拓展了例题1的视野,当然也考查旋转过程中如何观察特殊位置 (a = 0。或90。).(4)也是建立在前3题的基础上的,考查相似,面积割补及二次函数的相关知识点学法预设:对于学生提出的问题和猜想,教师不妨放手引导学生来解决.从而达到问题由学生提出,再由学生来解决,使学生之间产生情智的互动.估计学生是能够猜想出前 2个结论的,如果后2个猜想学 生一时想不出也不要紧,猜想 3、4其实就是教师的预设(3)、(4).对于彳#
13、想1、2,其实都是要证明 CO阵BON关键是要通过连 接OC OB来构造全等三角形, 这其中要用到正方形 的对角线相等的重要性质,这对于大多数学生来说应该不成问题对于预设的问题(2),可以结合猜想2的结论,利用两个等腰直角三角形的性质或相似三角形 来解决.对于彳#想3、4 (即教学预设(3)、(4),则是建立在前面的基础上的延伸.教学中可以运用几何画板的动画演示功能来引导学生从两个特殊位置入手来进行观察猜测,即运用“化静为动”的策 略,当点M与点C重合或者M为BC中点时,阴影部分的面积是正方形面积的1,即为4.再运用“以4静制动”的策略通过证明 CO阵BON来解决.而周长的变化,要引导学生观察
14、说明 BM+BN=强是 定值,但OM+O即不是定彳1,当 MW点C重合时OM®大,则周长最大,当 M为BC中点时OMt小, 则周长最小.可以的话,还可以用几何画板的测量功能来度量周长 对于预设问题(4),由于有前几题的基础,估计学生比较容易想到的是连结MN利用 MONf MNB勺面积之和为 4来解决.答案精要:(1) CM=BN BM=AN OM=ON MG=NE阴影部分的面积为定值 4, BM+BN=4;(2) MM GEOM ON 一 ,一 ,一.一. 一 一先证得 CO阵 BOfN OM= ON 又OG= OEOGG= OE 又一/ MON= / GOE MON GOE ./
15、OMNZ OGE MM GE(3)阴影部分的面积为定值 4;1,由 CO阵 BONT知 S 阴影=S/bo叶 Sabom= Sa co叶 Saboim= Sabo<c= 4s 正万形 abcd= 4;阴影部分的周长有变化;由 CM=BNT知 BM+BN=4.当点M与BC的中点重合时,阴影部分的周长最小值为8,当点M与点C重合时,阴影部分的周长最大值为4+4 2.,一1一112(4)由CM= BN= x 及BM+BN=4T彳导BM= 4- x,故y = Samon= S 阴影S/ bmn=4- -x(4 x) = 2x2-2x +4.DG 1例题3 (中考试题改编):正万形ABCDW EF
16、GHTB是边长为4的正万形,点G在BD上,且BG 3正方形EFGH点G顺时针旋转过程中,GF交AB于点N, GH AD于点M.(1)猜想GM与GN的关系,并证明;.DG a .(2)若则GM GN的关系又如何?BG b(3)设BN= x,阴影部分的面积为 y,试探索y与x的函数关系式.功能分析:此题其实是例1、例2的变式拓展题,与前 2个例题的共同之处也在于旋转中心都在一个正方 形的对角线上,不同之处在于此题设计的是一个正方形绕着另一个正方形的对角线上的任意一点旋 转,使问题更加一般化.例2中的正方形在旋转过程中一些线段相等、平行、面积不变等元素在此题 中都不再成立,证明的过程中的方法也发生了
17、变化,如证三角形全等转化为证 三角形相似,但不变的还是旋转的特征(性质).3个小题主要都是考查学生 在旋转背景中 如何来构造同一对相似三角形, 这是本题的难点之处, 其中第(3)小题还要考查学生如何把阴影部分的面积分割成直角三角形和直 角梯形的面积之和.第(1)题解决了,其他题目就好办了 .如何突破这个难点,还是要运用几何画板 的旋转功能,运用“化静为动”的策略来解决.学法预设:第1问,估计学生会有较大的困难,这时不妨运用几何画板的旋转功能,运用“化静为动”的 策略从特殊位置探求一般规律,让正方形HEFG着G点旋转,让学生观察得出,当M与。点重合,N与P点重合(注:GO! DA于点Q GP
18、177;AB于点P,可分别显示出 。点与P点),则四边形 GMA溅 为矩形,此时的位置最特殊,再通过“以静制动”补充一问:请求此时矩形的边GM即OG肖GN(即GP)的比值,从而转化为两个等腰直角 DOGWGPBffi似的问题,则易求矩形的边 GM GN的比值 一 1 一一 , 一 一, 等于不再通过几何圆板旋转正方形至如图所小的一般位置,学生不难发现GM GN的比值关系其实就3一 _- 一,1一一是要证明 GO眺AGPtN从而转化为刚才的矩形两边之比这样思路就打通了3第2问,其实是第1问的更一般化的结论,思路和方法与第1问如出一辙,只不过具体的数字换成了字母而已,同时体现了特殊到一般的数学思想
19、方法第3问,根据第1、2问的图形和证明过程中相似三角形的有关结论,从现成的图形中学生会发现原来阴影部分面积可以分割成直角梯形与直角三角形的面积.易求DO=OG=11Gp=PB=3设BN=x,则 PN=3-x,利用 GOM GPNt出 OM1(3-x),于是 AM=3-1(3-x)=2+ 1x.在这里,AM用 x 的代数式333表示是解决问题的关键,其实说到底还是用到了两对相似三角形答案精要:GM OG 1GN GP 3'(1)过G作GOL DA于点0,过G作GP± AB于点P.易证 DOG GPB 故0G= OG= DG=:,再证得 GOWAGPtNGP PB GB 3GM
20、1= 一:GN 3' 什DG a (2)万法同(1),若bg= b,则 (3)易求得 DO=OG=1 GP=PB=3 由 BN=x得 PN=3-x,故 OM1(3-x),于是 AM=3-1(3-x)=2+ ;x.333.y = ;(2+;x+3)+;X 3X(3-x)=7- 4x; 2323(三)总结提炼通过3个双正方形旋转的例习题的教学,要及时引导学生进行数学思想方法的总结和方法论的提炼,让学生进一步感受在旋转过程中的变与不变.深刻领会旋转的特征,即旋转角度等于对应边的夹角,旋转前后的图形是全等形.同时体悟隐藏在旋转背景背后的全等、相似、解直角三角形、函数、面积、特别是正方形的性质等
21、数学核心的知识点以及特殊到一般思想、化归思想、方程思想等数学 思想方法.(四)延伸拓展1、基础训练:(中考试题改编)正方形 ABCM OEFCtB是边长为12的正方形,其中点 。为正方形ABCD勺对 角线AC的中点.正方形OEF磷点。顺时针旋转a (0。 < a <45° )DAE(I)猜想:图中有哪些相等的线段(正方形的边长相等除外)?写出两个并证明;(II )若NJ=5,求BN的长;(III )若CM=x四边形OMJN勺面积为V,求y与x的函数关系式.答案精要:(I) CM=BN OM=O N MJ=NJ MG=NE 证明略;(II )易证 MO华ANOJ,设CM=B
22、J=x由NJ= MJ= 5可得BJ= 7-x ,在RtNBJ中利用勾股定 理可得x2+(7-x) 2=52,解得x=3或4.故BN等于3或4;(III )由(II )易知,y=36-%(7凶,即 y=-x2-|x+36.2、拓展训练:(2007无锡滨湖区中考模拟题)将两张互相重合的正方形纸片ABCD EFGHW中心。用图钉固定住,保持正方形 ABCK动,逆时针旋转正方形EFGH.(I)试给出旋转角度小于 90°时的一些猜想: M2 MA两张正方形纸片的重叠部分的面积为定值;/ MONWI 45° 不变.请你对这三个猜想作出判断(正确的在序号后的括号内打上,错误的打上“X”
23、):();();().(II )可以发现:中的 EMN勺面积S随着旋转角度/ DOE勺变化而变化.请你指出在怎样的 位置时 EMN勺面积S取得最大值.(不必证明)(III )上面的三个猜想中若有正确的,请选择其中的一个给予证明;若都是错误的,请选择其一 说明理由.答案精要:(I )(,);(X);(,);(II) 当/AOE=45时, EMN勺面积S取得最大值;(III) 对于猜想,连接 OA OE AE、OD ED.由已知得 OA=OE/ OAE=Z OEA又. / OAM=OEM=45 , . . / OAE-Z OAM= OEA-Z OEM 即/ MAEh MEAME=M A对于猜想,证
24、得 OMF分/ EOA同理ON¥分/ DOE,一,_1 , _1 /MOE廿 NOE2Z AOD2X90 =45 ,即/ MO琳持 45 不变.五、设计思路和意图中考第一轮复习不是知识点的简单重复,第一轮复习虽要以基础为主,但也要兼顾综合,体现“基础+综合”的复习思路,这样才能满足各个层次学生的学习需求.本节课选自图形变换一章的复习,针对不同学习层次的学生展开教学过程的设计,体现“起点低(注重基础,下要保底),步子紧(小步子式逐步提高要求),落点高(上不封顶)”的设计要求,利用几何画板的动画功能演绎旋转过程中的变与不变.这其中围绕某一核心知识背景(本节课是旋转)来设计“套题(题组)”式训练 是一条行之有效的途径.1、要精心设计有效的复习课教学环节 .通过“预学尝试一互动反馈一总结提炼一延伸拓展”等 四个环节来解决相关问题.引导学生预学提问(猜想),师生合作梳理问题,学生先独立尝试,再互 动解决问题.在此基础上教师再提出预设中的问题,有些虽然和学生提出的问题重复,但更能激发提出问题的学生的成就感.而对于学生没有猜想到的新问题可以让学生再次独立及合作互动解决,反馈在尝试和互动中生成.教师在教学时,要对所遇到的数学知识进行拓展,一题多问,一题多变,一图 多变,一图多用,多图归一,多解归一,使同一个教学内容发挥其最大的教学功能.在
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 四川省卫生健康委员会所属事业单位招聘考试真题2024
- 2025春季黑龙江哈尔滨市木兰县“丁香人才周”事业单位引才招聘76人考前自测高频考点模拟试题附答案详解(模拟题)
- 2025年智能眼镜的智能家居控制
- 2025年智能音箱的用户行为分析
- 2025河南航空港投资集团有限公司25人招聘模拟试卷及答案详解(夺冠)
- 2025河北保定市雄安新区雄县事业单位招聘89人模拟试卷及参考答案详解1套
- 2025年春季中国邮政储蓄银行内蒙古分行校园招聘模拟试卷附答案详解(典型题)
- 2025河南新乡市延津县县外在编在岗教师回乡任教的考前自测高频考点模拟试题完整答案详解
- 2025内蒙古阿拉善盟沪蒙能源集团有限公司招聘33人考前自测高频考点模拟试题完整参考答案详解
- 2025贵州六枝特区科学技术协会招聘公益性岗位人员1人考前自测高频考点模拟试题及答案详解(有一套)
- (正式版)YST 1682-2024 镁冶炼行业绿色工厂评价要求
- 体育健康知识教案课件
- 《复活(节选)》高二统编版语文选择性必修上册
- 卡西欧dh800电吹管说明书
- 分数的初步认识公开课一等奖市赛课一等奖课件
- 体育课免修申请书体育课免修申请书八篇
- 【超星尔雅学习通】商法的思维网课章节答案
- 509册泵类书籍大全-截止到20150531
- GB/T 5796.3-2022梯形螺纹第3部分:基本尺寸
- GA 576-2018防尾随联动互锁安全门通用技术条件
- 工厂化育苗基质与营养
评论
0/150
提交评论