




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、精品文档第一章三角形全等1、全等三角形的定义:能够完全重合的两个三角形叫做全等三角形。理解:全等三角形 形状与大小完全相等,与位置无关;一个三角形经过 平移、翻折、旋转后得到的三角形,与原三角形仍然全3; 三角形全等不因位置发生变化而改变。2、全等三角形的性质:全等三角形的对应边相等、对应角相等。理解:长边对长边,短边对短边;最大角对最大角,最小角对最小角;对应角的对边为对应边,对应边对的角为对应角。全等三角形的周长相等、面积相等。全等三角形的对应边上的对应中线、角平分线、高线 分别相等。3、全等三角形的判定:边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等。角边角公理(ASA)
2、有两角和它们的夹边对应相等的两个三角形全等。推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等。边边边公理(SSS)有三边对应相等的两个三角形全等。斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等。4、证明两个三角形全等的基本思路:已知两边:找第三边(SSS;找夹角(SAS;找是否有直角(HD .已知一边一角:找一角(AAS< ASA;找夹边(SAS .已知两角:找夹边(ASA;找其它边(AAS .精品文档第二章 轴对称1、 轴对称图形相对 一个图形 的对称而言;轴对称 是关于直线对称的两个图形 而言。2、 轴对称的性质:轴对称图形的对称轴 是任何一对对应
3、点 所连线段的垂直平分线;如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连的线段的垂直平分线;3、线段的垂直平分线:性质定理:线段垂直平分线上的点到线段两个端点的距离相等。判定定理:到线段两个端点距离相等的点在这条线段的垂直平分线上。拓展: 三角形三条边的垂直平分线的交点到 三个顶点 的距离相等4、角的角平分线:性质定理:角平分线上的点到角两边的距离相等。判定定理:到角两个边距离相等的点在这个角的角平分线上。拓展: 三角形三个角的角平分线 的交点到三 条边 的距离相等。5、等腰三角形:性质定理:等腰三角形的两个底角相等;(等边对等角)等腰三角形的顶角平分线、底边上的中线、底边上的高
4、线互相重合。( 三线合一)判断定理:一个三角形的两个相等的角所对的边也相等。(等角对等边)6、等边三角形:性质定理:等边三角形的三条边都相等;等边三角形的三个内角都相等,都等于 60° ;拓展: 等边三角形每条边都能运用三线合一 这性质。判断定理:三条边都相等的三角形是等边三角形;三个角都相等的三角形是等边三角形;有两个角是60°的三角形是等边三角形;有一个角是60°的等腰三角形是等边三角形。直角三角形中,如果有一个锐角是 30。,那么它所对的直角边等于 斜边的一半直角三角形中,斜边上的中线等于 斜边的一半。拓展:直角三角形常用面积法求斜边上的高。第三章勾股定理勾
5、:直角三角形较短的直角边股:直角三角形较长的直角边弦:斜边1、勾股定理:直角三角形两直角边a, b的平方和等于斜边c的平方,即a2+b2=c2。2、勾股定理的逆定理:如果三角形的三边长a, b, c有关系a2 + b2=c2,那么这个三角形是直角三角形3、勾股数:满足a2+b2=c2的三个正整数,称为勾股数。常见勾股数:3,4,5 ;6,8,10 ; 9,12,15 ;5,12,13。4、简单运用:勾股定理一一常用于求边长、周长、面积;理解:已知直角三角形的两边求第三边,并能求出周长、面积。用于证明线段平方关系的问题。利用勾股定理,作出长为4%的线段勾股定理的逆定理一一常用于判断三角形的形状;
6、理解:确定最大边(不妨设为 c);若c2=a2+b2,则4ABC是以/C为直角的三角形;若a2+b2<c2,则此三角形为钝角三角形(其中c为最大边);若a2+b2>c2,则此三角形为锐角三角形(其中c为最大边)难点:运用勾股定理立方程解决问题。精品文档第四章实数1、平方根:2定义:一般地,如果x =a(a >0),那么这个数x就叫做a的平方根(或二次方根)表示方法:正数a的平方根记做“ ±后,读作“正、负根号a”。性质:一个正数有两个平方根,它们 互为相反数;零的平方根是零;负数没有平方根。2、开平方:求一个数a的平方根的运算,叫做开平方。3、算术平方根:2定义:一
7、般地,如果x =a(a > 0),那么这个正数x就叫做a的算术平方根。特别地,0的算术平方根是00表示方法:记作“石”,读作“根号a”。性质:一个正数只有一个算术平方根;零的算术平方根是零;负数没有算术平方根。注意Va的双重非负性:<a20, a>0. a = a a - 0 ,. a2 = a a - 0 ,. a2 - -a a 三 04、立方根:定义:一般地,如果x3=a那么这个数x就叫做a的立方根(或三次方根)。表示方法:记作“小”,读作“三次根号a”。性质:一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。注意:却二a = -4,这说明三次根号内的
8、负号可以移到根号外面。 a f = Va3 = a5、开立方:求一个数a的立方根的运算,叫做开立方。6、实数定义与分类:无理数:无限不循环小数叫做无理数。理解:常见类型有三类:开方开不尽的数:如?7,3/9等;有特定意义的数:如圆周率 冗,或化简后含有冗的数,如冗+8等;有特定结构的数:如0.1010010001等;(注意省略号)实数:有理数和无理数统称为实数实数的分类:按符号性质来分充有理数?实数 |正无理数实数30L负实数年有理数Y无理数按定义来分整数(含0)有理数X分数实数KI无理数7、实数比较大小法:理解:正数大于零,负数小于零,正数大于一切负数;数轴比较:数轴上的两个点所表示的数,右
9、边的总比左边的大;绝对值比较法:两个负数,绝对值大的反而小。平方法:a、b是两负实数,若a2>b2,则acbo8、实数的运算:六种运算:力口、减、乘、除、乘方、开方实数的运算顺序:先算乘方和开方,再算乘除,最后算加减,如果有括号,就先算括号里面的。实数的运算律:加法交换律、加法结合律、乘法交换律、乘法结合律、乘法对加法的分配律。9、近似数:由于实际中常常不需要用精确的数描述一个量,甚至在更多情况下不可能得到精确的数,用以描述所研究的量,这样的数就叫 近似数。取近似值的方法一一四舍五入法。10、科学记数法:把一个数记为aM0n (其中1&a<1,n是整数)的形式,就叫科学计数
10、法每一个实数都可以用数轴上的点来表示;反过来,数轴上每一个点都表示一个实数。 实数与数轴上的点是一一对应的关系。第五章平面直角坐标系1、在平面内,确定物体的位置 一般需要两个数据。2、平面直角坐标系及有关概念:平面直角坐标系:定义:在平面内,两条 互相垂直且有公共原点的数轴,组成平面直角坐标系。其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;x轴和y轴统称坐标轴c它们的公共原点。称为直角坐标系的 原点;建立了直角坐标系的平面,叫做 坐标平面。象限:为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做 第一象限、第二象限、第
11、三象限、第四象限。注意:x轴和y轴上的点(坐标轴上的点),不属于任何一个象限。点的坐标的概念:对于平面内任意一点P,过点P分别x轴、y轴向作垂线,垂足在上x轴、y轴对应 的数a, b分别叫做点P的横坐标、纵坐标,有序数对(a, b)叫做点P的坐标。点的坐标用(a, b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开, 横、纵坐标的位置不能颠倒。平面内点的坐标是有序实数对,当awb时,(a , b)和(b , a)是两个不同点的坐标。平面内点的与有序实数对(坐标)是一一对应的关系。不同位置的点的坐标的特征:各象限内点的坐标的特征:点 P(x,y)在第一象限:x>0,y>0;点
12、 P(x,y)在第二象限:x<0,y>0 ;点P(x,y)在第三象限:x<0,y<0;点P(x,y)在第四象限:x>0,y<0。坐标轴上的点的特征:点P(x,y)在x轴上:y=0, x为任意实数;点P(x,y)在y轴上:x=0, y为任意实数。11、实数和数轴:精品文档精品文档点P(x,y)既在x轴上,又在y轴上:即是原点坐标为(0, 0)。两条坐标轴夹角平分线上点的坐标的特征:点P(x,y)在第一、三象限夹角平分线(直线 y=x)上:x与y相等;点P(x,y)在第二、四象限夹角平分线(直线 y=-x)上:x与y互为相反数。和坐标轴平行的直线上点的坐标的特征
13、:位于平行于x轴的直线上的各点的纵坐标相同;位于平行于y轴的直线上的各点的横坐标相同。关于x轴、y轴或原点对称的点的坐标的特征:点P与点p'关于x轴对称:横坐标相等,纵坐标互为相反数,即点P (x, y) 关于x轴的对称点为P' (x, -y)点P与点p'关于y轴对称:纵坐标相等,横坐标互为相反数,即点P (x, y) 关于y轴的对称点为P' (-x, y)点P与点p'关于原点对称:横、纵坐标均互为相反数,即点 P (x, y)关于 原点的对称点为P' (-x, -y)点P(x,y)到坐标轴及原点的距离:点P(x,y)到x轴的距离等于|y| ;点
14、P(x,y)到y轴的距离等于|x| ;点P(x,y)到原点的距离等于,x2 + y2 。精品文档第六章一次函数1、函数:一般地,在某一变化过程中有两个变量 X与y,如果给定一个x值,相应地就确定 了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。2、自变量取值范围:使函数有意义的自变量的取值的全体,叫做 自变量的取值范围。一般从整式(全体 实数),分式(分母不为0)、二次根式(被开方数为非负数)、实际意义几方面考虑。3、函数的三种表示法:关系式(解析)法:两个变量间的函数关系,有时可以用一个含有这两个变量及数 字运算符号的等式表示,这种表示法叫做关系式(解析)法。列表法:把自变量
15、x的一系列值和y的对应函数值,列成一个表来表示函数关系,这种表示法叫做列表法。图象法:用图象表示函数关系的方法叫做图象法。4、由函数关系式画具图像的一般步骤:列表:列表给出自变量与函数的一些对应值描点:以表中每对X和Y值为坐标,在坐标平面内描出相应的点连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。5、正比例函数和一次函数概念与性质:正比例函数和一次函数的概念:一般地,若两个变量x,y间的关系可以表示成y = kx+b (k, b为常数,k*0) 的形式,则称y是x的一次函数(x为自变量,y为因变量)。特别地,当一次函数y = kx + b中的b=0时(即y=kx) (k为常数
16、,k*0),称 y是x的正比例函数。正比例函数是特殊的一次函数。一次函数的图像:所有一次函数的图像都是一条直线一次函数、正比例函数图像的主要特征:一次函数y = kx+b的图像是经过点(0, b)的直线;正比例函数y = kx的图像是经过原点(0, 0)的直线。正比例函数的性质:一般地,正比例函数y = kx有下列性质:当k>0时,图像经过第一、三象限,y随x的增大而增大;当k<0时,图像经过第二、四象限,y随x的增大而减小。一次函数的性质:一般地,一次函数y = kx+b有下列性质:当k>0时,y随x的增大而增大当k<0时,y随x的增大而减小6、正比例函数和一次函数解
17、析式的确定:理解:确定一个正比例函数,就是要确定正比例函数y=kx (kw0)中的常数k确定一个一次函数,需要确定一次函数 y=kx+b(k *0)中的常数k和b。 解这类问题的一般方法是待定系数法。具体法方:过点必代,交点必联。7、一次函数与一元一次方程的关系:理解:任何一个一元一次方程都可转化为:kx+b=0 (k、b为常数,kw0)的形 式.而一次函数解析式形式正是 y=kx+b (k、b为常数,kw0).当函数(y)值为0时, ?即kx+b=0就与一元一次方程完全相同.由于任何一元一次方程都可转化为 kx+b=0 (k、b为常数,kw0)的形式.所 以解一元一次方程可以转化为:当一次函
18、数值为 0时,求相应的自变量的值.从图象上看,这相当于已知直线 y=kx+b确定它与x轴交点的横坐标值.一次函数补充一.常量、变量:在一个变化过程中,数值发生变化的量叫做 变量;数值始终不变的量叫做常量。二、函数的概念:函数的定义:一般的,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.三、函数中自变量取值范围的求法:(1)用整式表示的函数,自变量的取值范围是全体实数。(2)用分式表示的函数,自变量的取值范围是使分母不为0的一切实数。(3)用寄次根式表示的函数,自变量的取值范围是全体实数。用偶次根式表示的函数
19、,自变量的取值范围是使被开方数为非负数的一切实数。(4)若解析式由上述几种形式综合而成,须先求出各部分的取值范围,然后再求其公共范围,即为 自变量的取值范围。(5)对于与实际问题有关系的,自变量的取值范围应使实际问题有意义。四、函数图象的定义:一般的,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么在坐标平面内由这些点组成的图形,就是这个函数的图象.五、用描点法画函数的图象的一般步骤1、列表(表中给出一些自变量的值及其对应的函数值。)注意:列表时自变量由小到大,相差一样,有时需对称。2、描点:(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对
20、 应的各点。3、连线:(按照横坐标由小到大的顺序把所描的各点用平滑的曲线连接起来)。六、函数有三种表示形式 :(1)列表法(2)图像法 (3)解析式法七、正比例函数与一次函数的概念:一般地,形如y=kx(k为常数,且kw 0)的函数叫做正比例函数.其中k叫做比例系数。一般地,形如y=kx+b (k,b为常数,且kw 0)的函数叫做一次函数.当b =0时,y=kx+b即为y=kx,所以正比例函数,是一次函数的特例八、正比例函数的图象与性质:(1)图象:正比例函数y= kx (k是常数,kw0)的图象是经过原点的一条直线,我们称它为直线y= kx 。(2)性质:当k>0时,直线y= kx经过第三,一象限,从左向右上升,即随着x的增大y也增大;当k<0 时,直线y= kx经过二,四象限,从左向右下降,即随着 x的增大y反而减小。九、求函数解析式的方法:待定系数法:先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个式子的 方法。1 . 一次函数与一元一次方程:从数”的角度看x为何值时函数y= ax+b的值为0.2 .求ax+b=0(a, b是常数,aw。)的解,从 形”的角度看,求直线 y= ax+b与x轴交点的横坐标3 . 一次函数与一元一次不等式:解不等式a
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 酒店求职简历模板范文
- 详解金属加工工艺 附材料加工制造与表面工艺(金属篇)
- 湘艺版音乐二年级下册5《老爷爷赶鹅》 教案
- 2025年医用高频仪器设备项目建议书
- 2025年水泥掺合剂项目建议书
- 2025年高精度数字测温仪表项目合作计划书
- 教育技术如何影响儿童学习行为
- 2025年电脑测深仪项目建议书
- 教育数字化转型中的教师激励机制研究
- 医疗教育中心理引导的作用机制
- 2025至2030中国主数据管理(MDM)BPO行业发展趋势分析与未来投资战略咨询研究报告
- 油泵考试题及答案
- 抄表业务课件
- 蕉下Beneunder品牌资料收录
- GB/T 45700-2025物业管理术语
- 猪场公猪站测试题及答案
- 渣土外运施工方案(3篇)
- 胰腺手术技巧 胰腺切除术全程操作解析
- T/CECS 10169-2021埋地用聚乙烯(PE)高筋缠绕增强结构壁管材
- 农业经济专业实习总结范文
- 商场装修物业管理方案
评论
0/150
提交评论