实验一系统响应及系统稳定性_第1页
实验一系统响应及系统稳定性_第2页
实验一系统响应及系统稳定性_第3页
实验一系统响应及系统稳定性_第4页
实验一系统响应及系统稳定性_第5页
免费预览已结束,剩余8页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、:涂岳亮12014242105 组号:15实验一:系统响应及系统稳定性一.实验目的(1)掌握求系统响应的方法。(2)掌握时域离散系统的时域特性。(3)分析、观察及检验系统的稳定性。二.实验原理与方法在时域中,描写系统特性的方法是差分方程和单位脉冲响应,在 频域可以用系统函数描述系统特性。已知输入信号可以由差分方程、 单位脉冲响应或系统函数求出系统对于该输入信号的响应,本实验仅在时域求解。在计算机上适合用递推法求差分方程的解,最简单的方法是采用MATLAB语言的工具箱函数filter函数。也可以用MATLAB 语言的工具箱函数conv函数计算输入信号和系统的单位脉冲响应的 线性卷积,求出系统的响

2、应。实际中检查系统是否稳定,不可能检查系统对所有有界的输入信 号,输出是否都是有界输出,或者检查系统的单位脉冲响应满足绝对 可和的条件。可行的方法是在系统的输入端加入单位阶跃序列,如果系统的输出趋近一个常数(包括零),就可以断定系统是稳定的注意在以下实验中均假设系统的初始状态为零。三.实验容及步骤(1)编制程序,包括产生输入信号、单位脉冲响应序列的子程序,用filter函数或conv函数求解系统输出响应的主程序。 程序中要有绘制信号波形的功能。(2)给定一个低通滤波器的差分方程为输入信号的响应(a)分别求出系统对序列,并画出其波形。(b)给定系统的单位脉冲响应为(3 )用线性卷积法分别求系统h

3、1(n)和 h2(n)对的输出响应,并画出波形给定一谐振器的差分方程为用实验方法检查系统是否稳定。输入信号为u(n)时,画出系统输出波形。给定输入信号为求出系统的输出响应,并画出其波形。Nix( n)(n m).绘出m N1的频谱。(5).输入x(n) 1,2,3,4,5单位脉冲响应h(n) 6,2,3,6,4,2 ,求输出序列。(6) .分析频谱(a,b,c保证幅频特性的最大值为1)。iiHi(Z) a1出亿)b11 PZ 11 pz/、(1 z1)(1 z1)H3(z) cj1jkp 0.8,r0.85,(1 rej z )(1 re j z )四.实验结果A=1,-0.9;B=0.05,

4、0.05;粽统差分方程系数向量B和Ax1n=ones(1,8) zeros(1,50);联生信号 x1(n)=R8(n),用zeros用来加点的个数x2n=ones(1,128);联生信号 x2(n)=u(n)hn=impz(B,A,58);%求系统单位脉冲响应h(n)subplot(2,2,1);stem(hn,'g');涮用函数 stem绘图title('(a)系统单位脉冲响应h(n)');y1n=filter(B,A,x1n);献系统对 x1(n)的响应 y1(n)subplot(2,2,2);stem(y1n,'g');title(

5、9;(b)系统对 R8(n)的响应 y1(n)');y2n=filter(B,A,x2n);献系统对 x2(n)的响应 y2(n)subplot(2,2,3);stem(y2n,'g');title('(c)系统对 u(n)的响应 y2(n)');(a)系统单位脉冲响应h(n)0.10.080.060.040.0200204060图1 :调用filter解差分方程以及单位脉冲响应分析:50个点数和程序所写一致。差分方程描述了离散时间系统的输入-输出关系;系统的单位脉冲响应h (n)先发生阶跃然后随自变量n增大而递减;R8 (n)的响应先递增后呈指数型递减

6、,再 n=9时取得峰值。2、- (3)调用conv函数计算卷积x1n=ones(1,8);h1n=ones(1,10) zeros(1,10);h2n=1 2.5 2.5 1 zeros(1,10);y21n=conv(h1n,x1n);y22n=conv(h2n,x1n);subplot(2,2,1);stem(h1n,'g');title('(d)系统单位脉冲响应h1(n)');subplot(2,2,3);stem(y21n,'g');title('(e) h1(n)与 R8(n)的卷积 y21(n)');subplot(2

7、,2,2);stem(h2n,'g');title('系统单位脉冲响应h2(n)');subplot(2,2,4);stem(y22n,'g');title('(g) h2(n)与R8(n)的卷积 y22(n)');图2:调用conv函数计算卷积分析:系统单位脉冲响应hl (n)的图形是u(n)-u(n-10)的图形(d) (f)单位脉冲响应点数与程序要求一致(e) (g)卷积点数满足M+N-1的要求,图形也满足要求。3、(4)实验方法检查系统是否稳定close all;clear all;un=ones(1,256);犷生彳S号

8、 u(n)n=0:255;xsin=sin(0.014*n)+sin(0.4*n);%生正弦信号A=1,-1.8237,0.9801;B=1/100.49,0,-1/100.49;舔统差分方程系数向量 B 和 Ay1n=filter(B,A,un);%皆振器对 u(n)的响应 y31(n)y2n=filter(B,A,xsin);%皆振器对 u(n)的响应 y31(n)subplot(2,1,1);stem(y1n,'g');title('(h)谐振器对 u(n)的响应 y31(n)');subplot(2,1,2);stem(y2n,'g');

9、(h)谐振器对u(n)的 响应y31(n)title('(i)谐振器对正弦信号的响应y32(n)');0.050-0.05050100150200250300图3:实验方法检查系统是否稳定分析:在系统的输入端加入单位阶跃序列,如果系统的输出趋近一个常 数(包括零),就可以断定系统是稳定的;图中输出趋进于零,所以是稳定的;中谐振器具有对某个频率进行谐振的性质,本实验中的谐振器的 谐振频率是0.4 rad,因此稳定波形为sin(0.4n)。4.(1) n=200;stept=2*pi/n;w=stept:stept:2*pi;y=sin(2.5*w)./sin(0.5*w);plo

10、t(w,y,'g',w,zeros(size(w);axis(stept 2*pi -2 6);ylabel('y=sin(2.5*pi)/sin(0.5*pi)');xlabel('w=02*pi');title('(-2 , 6)频谱');grid on;谱 频 -2-2 12345665432101- jP5 一一 yw=02*pi图4: (-2 , 6)频谱(2) n=200;stept=2*pi/n;w=stept:stept:2*pi;y=sin(2.5*w)./sin(0.5*w);plot(w,abs(y),

11、9;g',w,zeros(size(w);axis(stept 2*pi 0 6);ylabel('y=sin(2.5*pi)/sin(0.5*pi)');xlabel('w=02*pi');title('(0-6)的绝对值频谱');grid on;5p45 03p 52n2=10(0-6)的绝对值频谱6123456w=02*pi图5: (0-6)的绝对值频谱5. N=5 ;M=6;L=N+M- 1 ;x=1,2,3,4,5;h=6,2,3,6,4,2;y=conv(x,h);nx=0:N- 1 ;nh=0:M- 1 ;ny=0:L- 1

12、 ;subplot(231);stem(nx,x,'g');xlabel('n');ylabel('x(n)');title('X(n)频谱');grid on; subplot(232);stem(nh,h, 'g');xlabel('n');ylabel('h(n)');title('H(n)频谱');grid on; subplot(233);stem(ny,y, 'g');xlabel('n');ylabel('y(n)

13、');title('y(n)频谱'); grid on;X(n)频谱nH(n)频谱42y(n)频谱图6:程序5试验结果6. p=0.8;r=0.85;alpha=pi/4;N=25;b1=1, 1;a1=1 -p;a=(1-p)/2;b1=b1*a;b2=1 ,- 1;a2=1 -p;b=(1+p)/2;b2=b2*b; b3=1 0-1;a3=1 -2*r*cos(alpha) r*r;c1=exp(j*2*alpha);c=abs(1-c1)/(1-r)*abs(1-r*c1);b3=b3/c;h1=impz(b1,a1,N);subplot(331);stem(h

14、1, 'g' );subplot(332);zplane(b1,b2)H1,P=freqz(b1,a1,256, 'whole' ,1);subplot(333);plot(P,abs(H1);grid on;h2=impz(b2,a2,N);subplot(334);stem(h2, 'g') hold on;plot(zeros(size(h2);subplot(335);zplane(b2,a2)H2,P=freqz(b2,a2,256,'whole', 1 );subplot(336);plot(P,abs(H2);grid on;h3=impz(b3,a3,N);subplot(337);stem(h3, 'g'

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论