




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第五章 高阶微分方程§1 几个例子一、【内容简介】本节结合几个具体的实例,介绍了与高阶微分方程有关的定解条件、定解问题和高阶微分方程的降阶技巧。二、【关键词】 自治微分方程三、【目的与要求】掌握高阶微分方程的降阶技巧,能熟练地运用降阶法解二阶方程,会用已有知识建立高阶微分方程及其相应的条件解决简单的几何、物理问题。四、【教学过程】 §2 n维线性空间中的微分方程一、【内容简介】在这一节里,主要介绍如何把n阶微分方程式化为标准微分方程组并采用向量的记号,将标准微分方程组写成向量的形式,从而可以从理论上把n维向量形式的微分方程的研究与一阶微分非常的研究统一起来。二、【关键词】
2、模;线性微分方程组三、【目的与要求】掌握将高阶微分方程化成等价的n阶标准微分方程组的方法;会叙述n维向量形式的微分方程和n阶线性微分方程组相应的毕卡存在和唯一性定理;掌握n阶线性微分方程组初值问题解的存在唯一性定理。四、【教学过程】§3 解对初值和参数的连续依赖性一、【内容简介】在这一节里,主要讨论解对初值和参数的连续依赖性,由于解对初值和参数的连续依赖性问题可归结为解对参数的同一问题。因此我们只讨论方程的解对参数的连续依赖性。二、【关键词】 参数;连续依赖性三、【目的与要求】解对初值和参数的连续依赖性定理揭示了微分方程的解的重要性质,要求弄清它的含义并正确地理解便于今后的应用。四、
3、【教学过程】§4 解对初值和参数的连续可微性一、【内容简介】本节主要讨论解对初值和参数的连续可微性。如上一节一样,只考虑方程的解对参数的连续可微性。二、【关键词】 连续可微性;变分方程三、【目的与要求】与上一节一样,解对初值和参数的连续可微性揭示了微分方程的重要性质,要求弄清它的含义并正确地理解便于今后的应用。四、【教学过程】教学过程前面我们主要讨论的是关于一阶方程的几个初等解法,在实际应用中,大多数微分方程是高阶的。二阶以及二阶以上的微分方程称为高阶微分方程。对于高阶微分方程没有较为普遍的解法,下面我们通过例题介绍几种高阶微分方程的解法。这些解法的基本思想就是把高阶微分方程通过某些
4、变换降为低阶的微分方程。§1 几个例子若方程不明显包含字变量,即: (1)这类方程叫作自治(或驻定)微分方程。若方程明显包含字变量,即: (2)这类方程叫作非自治(或非驻定)微分方程。对于(1)可考虑降阶。令,则代入(1),则得一个n-1阶的微分方程例 (3)这是一个二阶的自治方程。令,则 代入(3)则得一阶方程分离变量积分得或 (4)其中是常数,是的一个原函数。 对于固定的,(4)是一个一阶微分方程 分离变量,积分得, (5)其中是第二个常数,而,称(5)为微分方程(3)的通积分。例1、 单摆方程取一根长度为的细线,把端点固定在一顶板上,而另一端点挂上一个质量为m的小球,将小球拉离
5、平衡位置,然后松开,让它在一垂直平面内自由摆动,这样就构成一个单摆。(设单摆除重力外不受其他力的作用)。设直线与垂线的有向夹角为,并设逆时针方向为正,则单摆的振动可以用弧度来描述,单摆振动时,端只能在圆周上运动,且它的角速度为,切线速度为,切向加速度为。现将重力分解到切线及向径上,在上的分力为其中负号的力学意义:与的方向总是相反的,即与异号。由牛顿第二定律,即可得单摆的运动方程为: 或写成 (6)其中常数方程(6)为自治方程,可以用上述方法降阶,令则得 或写成这是一个为函数为自变量的一阶微分方程,积分得,上式可改写为 (7)分离变量积分得 上式出现了椭圆积分,为了克服这一困难,我们可以利用的泰
6、勒级数线性化。即当很小时,可用线性方程 (8)来代替方程(6)。对于方程(8),以乘以方程(8),即得对它可以直接积分,得 () 或 于是有分离变量积分得通积分 由此求得通解 (9)其中 是两个任意常数。由通解(9)可见,当时,得到单摆的静止状态: ;当时,单摆将以为振幅,为频率作简谐振动。由(9)可知,单摆将作周期振动,而且周期由此说明,单摆的振动周期只与单摆的长度和重力加速度有关,而与初始条件无关。这就是所谓单摆振动的等时性。老式的单摆钟就是利用了这种“等时性”。例2 悬链线方程设一理想的柔软而不能伸缩的细线,将两端挂在支点和上,由于受重力的作用,自然弯曲,试求悬链线的形状 。这个问题是历
7、史上的名题,最初1690年由詹姆斯贝努里提出来,伽里略曾猜想这条曲线是抛物线,但是后来发现不对,最后由约翰贝努里解决了,莱布尼兹把它命名为悬链线。下面就来解决这一问题。设在平面上,悬链线的最低点为,过作垂直线为轴,在上取一点,的长度后面再确定,过点,取与轴垂直的直线为轴(如图) 对于曲线是任意一点,在弧段上为张力,为重力。由于处于平衡状态,则有 为单位长度的重量,为弧长。消去,得 令 则有 为了消去,将上式求导得 而 代入得 (10)此方程是一个二阶的自治系统,令,则方程(10)降为一阶方程,分离变量积分,得 因为当时,代入得从而得 即 (11)由此又可得 (12)(11)+(12) 得即 积
8、分,得 若把 轴取在合适的位置,使当=0 时 代入 得 于是所求悬链线方程为 例3 二体问题天体运动中的二体问题是历史上一个著名的问题,牛顿早在发明微积分的同时,就研究了二体问题。假设太阳是静止的,它的质量为,地球的质量为,由于太阳系中除太阳外所有行星的总质量远小于,因此我们可以忽略别的行星的作用。现把坐标系的原点取在太阳上,这就构成了一惯性坐标系,地球的坐标向量为,则的速度和加速度分别为 由牛顿第二定律 ,则地球的惯性力为再根据万有引力定律,可建立地球的运动方程为即 (13)将(13)写成分量形式,即得如下的非线性方程组 (14)这是一个自治的微分方程组。求解这种高阶非线性方程组常用首次积分
9、,由(14)可以得到 即 由此可得一个首次积分 (15)其中是任意常数,同理可得: (16) (17)这里,都是任意常数。用乘以(15),乘以(16),乘以(17),然后相加得,这就是地球运行轨道所在平面的方程,这就证明了地球运行的轨道永远在一平面上。即二体问题是一个平面问题。下面设这个平面为,坐标平面。即地球的轨道永远在平面=0上,那么描述地球位置的坐标只要两个,即和,而运动的方程为一个4阶方程: (18)其中 用乘以(18)的第一式,用乘以(18)的第二式,相减得: 由此可得一个首次积分 (19)用乘以(18)的第一式,用乘以(18)的第二式,相加得:即 由此又得到一个首次积分 (20)为讨论方便,引进极坐标,那么 (21)代入(19)得 (22)即有 注意在时间内向量扫过的扇形面积为,故向量在单位时间扫过的面积为。这样就得到了开普勒第二定律:从太阳到行星的向量在单位时间内扫过的面积是常数。将(21)代入(20),得:即 (23)注意到(22)式有为使上式有意义,我们设因此有再利用(22),推得从而得积分得其中为任意常数,若又记,则可得行星运行轨道方
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 山西农村建房合同协议
- 小学生爱心教育
- 护理职业规划指南
- 护理教育学第五章:护理教学的心理学基础
- 室内设计答辩指南
- 中班冬季取暖安全课件
- 先天性甲减的护理
- 方程的意义教学
- 商务图文静态系列 (28)商务图文
- 美丽手部让你更自信
- 我国区域发展战略 【核心知识精讲精思】 高一地理下学期 (湘教版2019必修第二册)
- 2023年美国AHA心肺复苏指南
- DL-T 2087-2020 火力发电厂热电联产供热技术导则
- GB/T 20840.103-2020互感器第103部分:互感器在电能质量测量中的应用
- (模版1)某标准件厂冷镦车间变电所设计
- 2022Z世代洞察报告QuestMobile
- 大专毕业论文3000字格式12篇
- 部编版语文六年级下册期末总复习
- 初中学生家长会安全教育课件
- 第二部分-CPO-10中央机房优化控制系统
- 2020新版个人征信报告模板
评论
0/150
提交评论