




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、高等数学(下)模拟试卷一一、填空题(每空3分,共15分)(1)函数的定义域为(2)已知函数,则(3)交换积分次序,(4)已知是连接两点的直线段,则(5)已知微分方程,则其通解为二、选择题(每空3分,共15分)(1)设直线为,平面为,则()A. 平行于 B. 在上 C. 垂直于 D. 与斜交(2)设是由方程确定,则在点处的()A. B. C. D.(3)已知是由曲面及平面所围成的闭区域,将在柱面坐标系下化成三次积分为() A. B. C. D. (4)已知幂级数,则其收敛半径()A. B. C. D. (5)微分方程的特解的形式为()A. B. C. D.得分阅卷人三、计算题(每题8分,共48分
2、)1、 求过直线:且平行于直线:的平面方程2、 已知,求,3、 设,利用极坐标求4、 求函数的极值5、计算曲线积分,其中为摆线从点到的一段弧6、求微分方程满足的特解四.解答题(共22分)1、利用高斯公式计算,其中由圆锥面与上半球面所围成的立体表面的外侧2、(1)判别级数的敛散性,若收敛,判别是绝对收敛还是条件收敛;()(2)在求幂级数的和函数()高等数学(下)模拟试卷二一填空题(每空3分,共15分)(1)函数的定义域为;(2)已知函数,则在处的全微分;(3)交换积分次序,;(4)已知是抛物线上点与点之间的一段弧,则;(5)已知微分方程,则其通解为.二选择题(每空3分,共15分)(1)设直线为,
3、平面为,则与的夹角为();A. B. C. D. (2)设是由方程确定,则();A. B. C. D. (3)微分方程的特解的形式为();A. B. C. D.(4)已知是由球面所围成的闭区域, 将在球面坐标系下化成三次积分为();A B.C. D.(5)已知幂级数,则其收敛半径().A. B. C. D. 得分阅卷人三计算题(每题8分,共48分)5、 求过且与两平面和平行的直线方程 .6、 已知,求, .7、 设,利用极坐标计算 .得分8、 求函数的极值.9、 利用格林公式计算,其中为沿上半圆周、从到的弧段.6、求微分方程的通解.四解答题(共22分)1、(1)()判别级数的敛散性,若收敛,判
4、别是绝对收敛还是条件收敛; (2)()在区间内求幂级数的和函数 . 2、利用高斯公式计算,为抛物面的下侧高等数学(下)模拟试卷三一填空题(每空3分,共15分)1、函数的定义域为.2、=.3、已知,在处的微分.4、定积分.5、求由方程所确定的隐函数的导数.二选择题(每空3分,共15分)1、是函数的间断点(A)可去 (B)跳跃(C)无穷 (D)振荡2、积分= . (A) (B) (C) 0 (D) 13、函数在内的单调性是。(A)单调增加; (B)单调减少;(C)单调增加且单调减少; (D)可能增加;可能减少。4、的一阶导数为.(A) (B)(C)(D)5、向量与相互垂直则.(A)3 (B)-1
5、(C)4 (D)2三计算题(3小题,每题6分,共18分)1、求极限2、求极限3、已知,求四计算题(4小题,每题6分,共24分)1、已知,求2、计算积分3、计算积分4、计算积分五觧答题(3小题,共28分)1、求函数的凹凸区间及拐点。2、设求3、(1)求由及所围图形的面积; (2)求所围图形绕轴旋转一周所得的体积。高等数学(下)模拟试卷四一填空题(每空3分,共15分)1、函数的定义域为.2、=.3、已知,在处的微分.4、定积分=.5、函数的凸区间是.二选择题(每空3分,共15分)1、是函数的间断点(A)可去 (B)跳跃(C)无穷 (D)振荡2、若= (A)1 (B) (C)-1 (D) 3、在内函
6、数是。(A)单调增加; (B)单调减少;(C)单调增加且单调减少; (D)可能增加;可能减少。4、已知向量与向量则为.(A)6 (B)-6 (C)1(D)-35、已知函数可导,且为极值,则.(A) (B) (C)0 (D)三计算题(3小题,每题6分,共18分)1、求极限2、求极限3、已知,求四 计算题(每题6分,共24分)1、设所确定的隐函数的导数。2、计算积分3、计算积分4、计算积分五觧答题(3小题,共28分)1、已知,求在处的切线方程和法线方程。2、求证当时,3、(1)求由及所围图形的面积;(2)求所围图形绕轴旋转一周所得的体积。高等数学(下)模拟试卷一参考答案一、填空题:(每空3分,共1
7、5分)1、 2、 3、4、 5、二、选择题:(每空3分,共15分).45.三、计算题(每题8分,共48分)1、解:平面方程为2、解:令3、解:,4解:得驻点极小值为5解:,有曲线积分与路径无关 积分路线选择:从,从6解:通解为代入,得,特解为四、解答题1、解:方法一:原式方法二:原式2、解:(1)令收敛, 绝对收敛。(2)令高等数学(下)模拟试卷二参考答案一、填空题:(每空3分,共15分)1、 2、 3、4、 5、二、选择题:(每空3分,共15分)1. 2.3. 4.5. 三、计算题(每题8分,共48分)1、解:直线方程为2、解:令3、解:,4解:得驻点极小值为5解:,有取从原式6解:通解为四、解答题1、解:(1)令收敛, 绝对收敛(2)令,2、解:构造曲面上侧高等数学(下)模拟试卷三参考答案一填空题:(每空3分,共15分)1.;2.;3. ;4.0;5. 或二选择题:(每空3分,共15分)三计算题:1. 2. 3. 四计算题: 1.;2.原式 3. 原式 4.原式。五解答题:1 2.3.(1) (2)、高等数学(下)模拟试卷四参考
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 船用齿轮箱与传动装置维修考核试卷
- 电子汽车安全产品考核试卷
- 上海市浦东新区市级名校2025年高三年级月考(三)化学试题含解析
- 南京师范大学中北学院《珠宝玉石概论》2023-2024学年第二学期期末试卷
- 武汉航海职业技术学院《遗民文学研究》2023-2024学年第一学期期末试卷
- 内蒙古乌海市海勃湾区2025年初三开学摸底联考物理试题含解析
- 济南市莱芜地区2025年初三第一次模拟考试物理试题文试题含解析
- 金华市金东区2024-2025学年五下数学期末联考模拟试题含答案
- 武夷学院《发电厂电气部分A》2023-2024学年第二学期期末试卷
- 武汉学院《植物病虫害防治》2023-2024学年第二学期期末试卷
- 肾脏移植课件
- 食品生产许可审查通则解读课件
- 医院“双培养”制度
- GB∕T 37370-2019 中国常见色色名和色度特性
- DB34∕T 1948-2013 建设工程造价咨询档案立卷标准
- 漫画教你精益生产课件
- 国内外桥梁垮塌事故案例分析
- GB∕T 20721-2022 自动导引车 通用技术条件
- RCA应用于给药错误事情的分析结果汇报
- 申论答题纸-方格纸模板A4-可打印
- DB34∕T 2233-2021 预制混凝土砌块护坡工程技术规程
评论
0/150
提交评论