三相异步电动机软启动器设计_第1页
三相异步电动机软启动器设计_第2页
三相异步电动机软启动器设计_第3页
三相异步电动机软启动器设计_第4页
三相异步电动机软启动器设计_第5页
已阅读5页,还剩40页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、课题来源发达的工业化国家,三相感应电动机消耗了大约70%的电能。电机直接起动存在较大的冲击,消耗了大量电能。直接起动方式虽然起动 简单,但是电机在直接起动时会产生很大的瞬间电流冲击,造成许多危 害,如过大的热应力极易导致绕组损坏,造成绕组绝缘提前老化,从而 降低电动机的使用寿命;过大的起动电流将使感应电动机的起动转矩冲 击很大;过大的起动电流还造成对电网的冲击,造成能源浪费,传统降 压起动方法无法从根本上解决这些问题。因此研究三相感应电动机的软 起动器,以此来克服上述电动机起动时的缺点,是很有现实意义和经济 效益的。本文设计了三相交流电动机软起动器, 主电路由三组反并联的晶闸 管构成。通过控制

2、品闸管的触发角,可降低三相感应电动机定子电压, 从而达到抑制起动电流冲击的目的。 本设计采取开环控制系统利用移相 电路控制品闸管导通角,控制电路由积分电路、加法电路、反向电路及 限幅电路形成触发模块的控制电压,触发模快由KC04、KC41及功放电路组成。4 / 43软启动器是一种集电机软起动、软停车、轻载节能和多种保护功能课 题 的 目 的*、 意 义于一体的新颖电机控制装置,国外称为 Soft Starter。它的主要构成是 用接于电源与被控电机之间的三相反并联闸管及其电子控制电路。运用不同的方法,控制三相反并联闸管的导通角,使被控电机的输入电压按 不同的要求而变化,就可实现不同的功能。软启

3、动器以体积小,转矩可以调节、启动平稳冲击小并具有软 停机功能等优点得到了越来越多的应用,大有取代传统的自耦减压、星- 角等启动器的趋势.由于软启动器是近年来新发展起来的启动设备,在 设计、安装、调试和使用方面还缺少指导性的规范与规程 .我们在软启 动器的安装、调试工作中也遇到了一些实际技术问题.例如:不同启动负 载软启动器的选型、软启动冲击电流与过流保护定值的配合、软启动设 备容量与变压器容量的关系等问题.(1)能使电机起动电压以恒定的斜率平稳上升,起动电流小,对电网 无冲击电流,减小负载的机械冲击。(2)起动电压上升斜率可调,保证了起动过程的平滑性,起动电 压可依据不同的负载在30%70%U

4、e(Ue 为额定电压)范围内连续可 调。(3)可以根据不同的负载设定起动时间。(4)起动器还具有可控硅短路保护、缺相保护、过热保护、欠压 保护。(1)软启动器发展(2)电机软启动的发展;(3)进行方案选择,确定控制方案;熟悉(4)建立交流异步电机软起动控制的控制模型;(5)设计主电路、驱动电路和接口电路,画出电路原理图和总框图;(6)熟悉KeilC仿真调试环境;(7)画出软件流程图、软件编程及调试;(8)撰写毕业论文说(9)毕业设计答辩。课 题 主 要 内三相交流电机广泛应用于拖动风机、皮带机、水泵、真空泵、潜水泵及压缩机等,故电机的起动、控制、运行及安全可靠性显得十分重要,尤其是大功率电机的

5、起动及系统的保护。针对电机起动的优良性、控制的可靠性、保护功能的全面性,设计一种软起动控制系统,从而改善电机起动效果,提高系统保护与控制功能的完善性与可靠性。系统设计原理图通常,当电机功率大于7.skw时,须采用降压起动,故本文所设计的控制系统是针对广泛使用的大功率三相电机降压起动进行设计。目录摘 要 11 三相异步电动机软启动器的设计21.1 国内外研究现状 21.2 本课题研究内容 22 三相异步电动机的起动控制的研究 42.1 三相异步电动机的起动过程的分析 42.2 三相异步电机的启动方法 62.2.1 直接起动 72.2.2 传统减压起动 82.2.3 软启动 102.3 软起动的原

6、理及分析 112.3.1 晶闸管调压原理 112.3.2 软起动的起动方式 133 软启动器的硬件电路设计163.1 主要器件的介绍 163.1.1 KJ004 功能介绍163.1.2 KJ041 功能介绍183.2 主电路的选择 193.2.2晶闸管相控调压原理 203.3 主回路设计 213.3.1 主回路电路 213.3.2 晶闸管参数选择 213.3.3 晶闸管触发电路 223.3.4 晶闸管保护电路 243.4 电压检测回路 253.4.1 同步信号检测 253.4.2 电压反馈回路 273.4.3 电压过欠保护电路 273.5 电流检测回路 273.5.1 电流反馈回路 283.5

7、.2 过电流保护电路284 基于单片机的软起动器的设计294.1 触发脉冲控制的软件设计29结束语 38参考文献39摘要三相异步电动机因具有结构简单、制造方便、运行可靠、价格低廉等优点,而广泛应用在工业、农业、 交通运输业、国防工业以及其他各行各业中。但它也有明显的缺点,那就是起动转矩小,起动电流过大。这种情况对电机本身及周围电网都有非常不利的影响。为了减小异步电动机起动过程中对电网的冲击、消除传统降压起动设备的有级触点控制对异步电动机的冲击、改善异步电动机的起动特性,本文对基于单片机控制的晶闸管调压软起动器进行讨论。本文首先阐述了软起动器晶闸管调压电路( 即主电路 ) 的工作原理,主要是基于

8、晶闸管的三相异步电动机软启动器主电路设计和触发电路设计。然后是对电动机软启动器模式的设计,但主要还是软起动器的硬件电路设计。本文设计的软起动器操作方便简单,能够使电机顺利起动。使之能达到了改善三相异步电动机起动性能的要求。在满足异步电动机起动转矩要求及降低起动电流的前提下,使电机能够平稳可靠起动。关键词 :异步电动机;晶闸管;软起动1 三相异步电动机软启动器的设计1.1 国内外研究现状我国软起动技术起步于上世纪80 年代早期,目前生产电机启动器的厂家很多,先后也推出了多种品牌的软起动器。但由于国内自主开发和生产的能力相对较弱,对国外 产品的依赖还是很严重。在技术上和可靠性上与国外同类产品尚有一

9、定的差距。所以在 整个软起动器市场上,占据统治地位的还是国外产品,国内产品所占的份额还是很低。目前市场上生产的软启动器主要以机械式和三相反并联晶闸管方式为主。机械式启动器是目前使用比较广泛的启动方式,但它是有级起动,会产生二次冲击电流,启动电流仍然为标称电流的34倍,且有体积大、噪音大、维护费用高、无法适应恶劣环境等诸多弊端。 近三十年来,随着电力电子技术的发展,使无电弧开关和连续调节电流成为可能。电力半导体开关器件具有无磨损、寿命长、功耗小等特点,结合现代控制理论及微机控 制技术,为实现电机的软起动提供了全新的思路。要突破传统的启动方式,是离不开电 力电子技术和微机控制技术的发展的。目前在国

10、外,发达国家的电动机软起动产品主要是固态软起动装置晶闸管软起动和兼作软起动的变频器。在生产工艺兼有调速要求时,采用变频装置。在没有调速要 求使用的场合下,起动负载较轻时一般采用晶闸管软起动。在重载或负载功率特别大的 时候,才使用变频软起动。晶闸管软起动装置是发达国家软起动的主流产品,各知名电气公司均有自己品闸管软起动的品牌,在其功能上又各具特色。例如 GE公司生产的 ASTAT?能电机软起动器;ABB公司生产的PST PSTB系列电机软起动器;施耐德公司 的ATS4琳起动器;德国 SIEMENS的3RW2名IKOSTAR软起动器等等。目前,国外 对晶闸管三相交流调压电路的研究己经从对控制电压、

11、控制电机电流的开环、闭环方式,发展到通过建立比较准确实用的数学模型,找到适用于三相交流调压电路电机负载的控制方法,从而使三相交流调压电路电机负载性能更优3 。另一方面,随着电力电子技术的发展,异步电动机向更加可靠、方便性好、小型化方向发展。1.2 本课题研究内容软启动器本质上是一种直流调压装置,用来实现软启动、软停车、实时监测以及各种保护功能。为了保证系统安全可靠地运行,可以充分发挥单片机的强大控制功能,由主控制电路对系统的关键器件和关键参数,例如过压、欠压、过流、过载、等进行实时监控。随着数字直流PW蜩压技术的应用,以及采用高性能的单片机作为系统的控制核 心,可以使软启动器具有控制快速准确、

12、响应快、运行稳定、可靠等优点。在三相交流异步电动机不宜采用直接启动的时候,可以考虑采用定子串电阻或串电抗器启动、Y- 启动、自耦变压器降压启动、转子串电阻启动、晶闸管电子软启动、分级变频软启动、两相变频调压软启动等方法。结合各方面的因素及实际情况,本课题研究的内容主要有:(1) 研究三相调压软起动的基本原理,对三相异步电动机的起动电流和起动转矩进行分析,对软起动控制策略进行研究。(2) 对三相晶闸管软起动系统进行硬件设计。包括主电路,触发电路,检测电路,控制电路,驱动电路等。(3) 实现三相异步电动机软启动器模式的设计和软件的有关设计。(4)用PROTE绘制系统的原理图。本课题的目标是实现三相

13、异步电机的软启动,甚至使软启动器能够根据电机负载的实际情况改变。27 / 432三相异步电动机的起动控制的研究交流三相异步电动机的传统启动技术,如定子用电阻/电抗器启动、自耦变压器降压启动、星形-三角形降压启动、转子用电阻或频敏变阻器启动等,在交流电动机启动 技术发展过程中都有过重要应用。但随着晶闸管技术的发展,三相交流调压软启动器因 为具有性能良好、产品多样、电压可连续调节以及转矩或电流可闭环控制等优点,使得 电子软启动器得到了深入而广泛的发展,成为软启动市场中的主流产品。2.1三相异步电动机的起动过程的分析Xmm三X为了研究三相异步电动机的起动时的电压、电流、转矩等变量的关系,进而分析异

14、步电机起动时的电流、起动转矩和所外加电压的关系,就要研究电机的数学模型。对于 电动机的软起动而言,多采用基于集中参数等效电路的数学模型。在不改变异步电动机 定子绕组中的物理量和异步电机的电磁性能的前提下,经频率和绕组的计算,把异步电 动机转子绕组的频率、相数、每相有效串联匝数都归算成和定子绕组一样,即可用归算 过的基本方程式推导出异步电动机的等效电路。 三相异步电动机的T形稳态等效电路如 图2-1所示:7riXii-scn i iUi图2-1异步电动机的等效电路其中,ri为定子绕组的电阻,xi为定子绕组的漏电抗,r2为归算到定子方面的转子 绕组的电阻,X2为归算到定子方面的转子绕组的漏抗。rm

15、代表与定子铁心损耗所对应的 励磁电阻,Xm代表与主磁通相对应的铁心磁路的励磁电抗。 Ui为定子电压向量,Ei为 定子感应电动势向量,ii为定子电流向量,im为磁电流向量。基于T形等效电路的数学 模型为:由以上四式可得:uE 1 ii(rijXi)TiiZiE2 = I 2( +jx 2)si1i2 = i mE'2 = E1 - - 1mzm - - 1m rmjxmI =U1 r! + jX1 + 1 +jX2 1+Srm jXml jX,2(2-1)(2-2)(2-3)(2-4)(2-5)在异步电动机里,因为r1<X1, rm<<Xm,故可以省去r1, rm,则式

16、(2-5)可以表示为: U1I = I m(r1 + jx”'1+ x1;Xm(r2+jX'2) s(2-6)由等效电路可见,异步电动机输入的电功率P1 一部分消耗在钉子绕组的电阻而称为定子铜耗Pcu1, 一部分消耗在定子铁心上而变成铁耗PFe,剩余的通过气隙传递到转子的功率成为电磁功耗Pemo其中Pem为:Pem = mEi I '2 cos 2' = mJ '2 r '2/ s(2-7)电磁转矩为:TemPmecQ(1 - s)Pmec1-s11Rm0(2-8)其中,2n1- f11 = 2"-60p为同步角速度;60为转子机械角速

17、度;Pem为机械功率。由式(2-7)和式(2-8)可得:TemPem P2 r2' m112's(2-9)根据T形等效电路可得:(2-10)将式(2-10)代入(2-9)得:Tem2n17IF2sU12史1 2X1 X 2(2-11)刚起动时,转子n=0,转差率s=1,此时启动转矩为:PEU122,2n f1+2' j +(x +X2,j(2-12)U1I 2'.(1 -)(X1 , X2 ')1 二同时,由于激磁电流相对较小即1XmJ近似为1,由式(2-6)的启动电流为:I stU12(2-13)由式(2-12)和式(2-13)可知,起动转矩正比于定子

18、端电压的平方,起动电流正比于定 子电压。起动电压较低时,起动转矩较小,电流也较小;反之,如果电压较高,则起动 转矩较大,但同时起动时的冲击电流也很大。而异步电动机的起动特性主要表现在起动电流和起动转矩两个方面:希望电动机起 动时能产生足够的起动转矩,以便带动负载快速地达到正常转速;同时,也希望起动电 流不要太大。因为在供电变压器的容量比较小的情况下,过大的起动电流将造成较大的 线路压降,从而影响接在同一电网上的其它电气设备的正常运行。下面针对异步电动机的起动特性,分析起动方式的原理和应用。2.2三相异步电机的启动方法三相异步电动机的起动方法主要有直接起动、传统减压启动和软启动三种启动方法。 卜

19、面就分别做详细介绍。2.2.1 直接起动直接起动,也叫全压起动。起动时通过一些直接起动设备,将全部电源电压(即全压)直接加到异步电动机的定子绕组,使电动机在额定电压下进行起动。一般情况下, 直接起动时起动电流为额定电流的 38倍,起动转矩为额定转矩的12倍。根据对国 产电动机实际测量,某些笼型异步电动机起动电流甚至可以达到812倍。直接起动的起动线路是最简单的,如图 2-2所示。然而这种起动方法有诸多不足。 对于需要频繁起动的电动机,过大的起动电流会造成电动机的发热,缩短电动机的使用 寿命;同时电动机绕组在电动力的作用下, 会发生变形,可能引起短路进而烧毁电动机; 另外过大的起动电流,会使线路

20、电压降增大,造成电网电压的显著下降,从而影响同一 电网的其他设备的正常工作,有时甚至使它们停下来或无法带负载起动。这是因为Ts及Tm均与电网电压的平方成正比,电网电压的显著下降,可使Ts及Tm均下降到低于Tzo一般情况下,异步电动机的功率小于7.5kW时允许直接起动。如果功率大于7.5kW, 而电源总容量较大,能符合下式要求的话,电动机也可允许直接起动。I同 1 :电源总容量(kv A) 1K1 = 3 W - 3 +I1N 4起动电动总功率(kw)如果不能满足上式的要求,则必须采用减压启动的方法,通过减压,把启动电流 1st限制到允许的数值。图2-2直接启动原理图2.2.2 传统减压起动减压

21、起动是在起动时先降低定子绕组上的电压, 待起动后,再把电压恢复到额定值。 减压起动虽然可以减小起动电流,但是同时起动转矩也会减小。因此,减压起动方法一 般只适用于轻载或空载情况。传统减压起动的具体方法很多,这里介绍以下三种减压起 动的方法:定子用接电阻或电抗起动定子绕组用电阻或电抗相当于降低定子绕组的外加电压。由三相异步电动机的等效电路可知:起动电流正比于定子绕组的电压,因而定子绕组用电阻或电抗可以达到减小 起动电流的目的。但考虑到起动转矩与定子绕组电压的平方成正比,起动转矩会降低的 更多。因此,这种起动方法仅仅适用于空载或轻载起动场合。对于容量较小的异步电动机,一般采用定子绕组用电阻降压;但

22、对于容量较大的异 步电动机,考虑到申接电阻会造成铜耗较大,故采用定子绕组用电抗降压起动。如图2-3所示:当起动电机时,合上开关 Q,交流接触器KM断开,使电源经电阻 或电抗R流进电机。当电机起动完成时 KM吸合,短接电阻或电抗 RoU V W(2)星-三角形(¥-)起动星-三角形起动法是电动机起动时,定子绕组为星形(丫)接法,当转速上升至接近额 定转速时,将绕组切换为三角形()接法,使电动机转为正常运行的一种起动方式。星 - 三角形起动方法虽然简单,但电动机定子绕组的六个出线端都要引出来,略显麻烦。图2-4为星-三角形起动法的原理图。接触器 KM2和KM3互锁,即其中一个闭合 时,必

23、须保证另一个断开。KM2闭合时,定子绕组为星形(丫)接法,使电动机起动。切 换至KM3闭合,定子绕组改为三角形()接法,电动机转为正常运行。由控制电路中的 时间继电器KT确定星-三角切换的时间。定子绕组接成星形连接后,每相绕组的相电压为三角形连接(全压)时的1/J3,故星-三角形起动时起动电流及起动转矩均下降为直接起动的1/3。由于起动转矩小,该方法只适合于轻载起动的场合。U V W图2-4星-三角形起动法的原理图(3)自耦变压器起动自耦变压器起动法就是电动机起动时,电源通过自耦变压器降压后接到电动机上, 待转速上升至接近额定转速时,将自耦变压器从电源切除,而使电动机直接接到电网上 转化为正常

24、运行的一种起动方法。图2-5所示为自耦变压器起动的自动控制主回路。控制过程如下:合上空气开关Q接通三相电源。按启动按钮后 KM1线圈通电吸合并自锁,其主触头闭合,将自耦变压 器线圈接成星形,与此同时由于KM1辅助常开触点闭合,使得接触器KM2线圈通电吸 合,KM2的主触头闭合由自耦变压器的低压抽头(例如65%)将三相电压的65%接入电 动。当时间继电器KT延时完毕闭合后,KM1线圈断电,使自耦变压器线圈封星端打开;同时KM2线圈断电,切断自耦变压器电源,使 KM3线圈得电吸合,KM3主触头接通 电动机在全压下运行。自耦变压器一般有 65%和80%额定电压的两组抽头。若自耦变压器的变比为k,与直

25、接起动相比,采用自耦变压器起动时,具一次侧起 动线电流和起动转矩都降低到直接起动的l / k2。自耦变压器起动法不受电动机绕组接线方式(丫接法或接法)的限制,允许的起动 电流和所需起动转矩可通过改变抽头进行选择,但设备费用较高。自耦变压器起动适用于容量较大的低压电动机作减压起动用,应用非常广泛,有手 动及自动控制线路。具优点是电压抽头可供不同负载起动时选择;缺点是质量大、体积 大、价格高、维护检修费用高。2.2.3软启动软起动可分为有级和无级两类,前者的调节是分档的,后者的调节是连续的。在电 动机定子回路中,通过用入限流作用的电力器件实现软起动, 叫做降压或者限流软起动。 它是软起动中的一个重

26、要类别。按限流器件不同可分为:以电解液限流的液阻软起动; 以磁饱和电抗器为限流器件的磁控软起动;以晶闸管为限流器件的晶闸管软起动。晶闸管软起动产品问世不过 30年左右的时间,它是当今电力电子器件长足进步的 结果。10年前,电气工程界就有人预言,晶闸管软起动将引发软起动行业的一场革命。目前在低压(380V)内,晶闸管软起动产品价格已经下降到液阻软起动的大约2倍,甚至更低。而其主要性能却优于液阻软起动。与液阻软起动相比,它的体积小、结构紧凑, 维护量小,功能齐全,菜单丰富,起动重复性好,保护周全,这些都是液阻软起动无法 比拟的。但是晶闸管软起动产品也有缺点。一是高压产品的价格太高,是液阻软起动产品

27、的510倍,二是品闸管引起的高次谐波比较严重。2.3软起动的原理及分析2.3.1 晶闸管调压原理品闸管的控制方式有两种:一是相位控制,即通过控制品闸管的导通角来调压;二 是周波控制,即把晶闸管作为静止接触器,交替的接通与切断几个周波的电源电压,用 改变接通时间与切断时间之比来控制输出电压的有效值,从而达到调压的目的。但周波 控制用在异步电机定子上时,通断交替的频率不能太低,一方面会引起电动机转速的波 动,另一方面每次接通电流就相当于一次异步电动机的重起动过程。当电源切断时,电 动机气隙中的磁场将由转子中的瞬态电流来维持,并随着转子而旋转,气隙磁场在定子 绕组中感应的电动势频率将有所变化,当断流

28、时问隔较长时,这个旋转磁场在定子中感 应的电势和重新接通时的电源电压在相位上可能会有很大的差别,这样就会出现较大的电流冲击,可能危及品闸管的安全。故在异步电动机的调压控制中,晶闸管调压一般采 用相位控制。采用相位控制时,输出电压波形已不是正弦波,经分析可知,输出电压不 含偶次谐波,奇次谐波中以三次谐波为主要成分。谐波在异步电机中会引起附加损耗, 产生转矩脉动等不良影响。此外,由于异步电机是感性负载,从电力电子学中可以知道, 当品闸管交流调压回路带有感性负载时,只有当移相角大于负载的功率因数角时,才能 起到调压的作用。当口平时,电流导通的时间将始终保持在 180 o其情况与口=0时一 样,相控不

29、起任何调压作用,甚至在晶闸管触发脉冲不够宽的情况下,出现只有一个方 向上的品闸管工作,负载上出现直流分量,对晶闸管造成危害。为了保证品闸管的安全,CD在使用相控品闸管电路时采用宽脉冲触发,移相范围限制在驾180 o本系统软起动器采用晶闸管调压原理, 通过调节电动机定子输入端电压的大小和相位实现软起动的各种功能。本系统软起动器采用了如图2-6所示的主电路。用三组反并联品闸管分别串联在星形接法的电机三相定子线圈上,这种连接方式谐波比较少,调压 性能最为优越,控制系统简单、可靠。图2-6软起动主回路原理图为了方便分析,做以下假定:(1)电源为三相对称的正弦电压源,内阻抗为零;(2)各品闸管的特性一致

30、,对称触发,关断状态时,其阻抗为无穷大;导通状时压降 为零;(3)电机为理想电机,其定、转子绕组在空间产生正弦分布的磁通势;(4)稳态运行时,电机的转速为常数。由于主电路中没有中线,因此在工作时若要负载电流流通,至少要有两相构成通路。 其中一相是正向晶闸管导通,另一相则是反向晶闸管导通。为了保证在电路起始工作时 有两个品闸管同时导通,以及在感性负载与控制角较小时仍能保证不同相的两个品闸管 同时导通,本系统采用了能够产生大于 60°的双窄脉冲的触发电路。要实现异步电动机的平稳起动,需要控制电机的输入电压,使其按照某种曲线由小 到大逐渐上升。通过按照一定时序调整六个晶闸管的触发角就可以实

31、现该目标。该电路 的调压实质是对电源电压进行斩波。电机获得的电压是非正弦的,但是每相电压的正负 半周是对称的。品闸管任意一相的电压波形如图 2-7所示,其中电网电压的波形是完整 的正弦波,”是晶闸管的触发角,中是负载的功率因数角(也叫晶闸管的续流角),8是 品闸管的导通角。由图2-7可以很容易地推导出触发角",功率因数角中以及导通角H之间的关系:e = n a + 中公式(2-15)图2-7任意相晶闸管的工作波形其中晶闸管的输出电压是介于导通角10之间的波形。通过改变导通角10的大小,就 可以改变晶闸管的输出电压,从而改变了电机的输入电压。由式(2-15)可以得知,导通角日与触发角口

32、、功率因数角中都有关。对于恒定的负载而言,功率因数角 中是常量, 导通角9仅仅与触发角有关。此时,只要改变晶闸管触发角 口就可以改变晶闸管的输 出电压。但是对于异步电动机而言,功率因数角 中是个变量,并且是电机转速的函数。 在电机起动过程中,随着转速逐渐变大,功率因数角中也在不断变化。因此,改变品闸管触发角口的同时也要兼顾功率因数角,的变化情况。只有这样,才能实现异步电动机 的输入电压按照预定规律变化的要求4。2.3.2 软起动的起动方式软起动器的功能主要是实现软起动和软停车,而软停车相当于是软起动的逆过程。 三相异步电动机软起动器拥有多种起动模式, 可以满足不同的起动要求。下面详细介绍: 限

33、流起动限流起动就是在电动机的起动过程中限制其起动电流不超过某一设定值Im的软起动方式,起动波形如图2-8所示。主要用于轻载起动的降压起动,具输出电压从零开始 迅速增长,直到其输出电流达到预先设定的电流限值Im,然后保持输出电流不大于该值的条件下逐渐升高电压,直到额定电压。这种起动方式的优点是起动电流小,且可按 需要调整起动电流的限定值Im。其缺点是在起动时难以知道起动压降,不能充分利用 压降空间,损失起动转矩,起动时间相对较长。该方法应用较多,适用于风机,泵类负 载。/(o图2-8限流启动波形(2)电压斜坡起动输出电压由小到大斜坡线性上升,将传统的有级降压起动变为无级,主要用在重载 起动。它的

34、缺点是起动转矩小,且转矩特性呈抛物线型上升对起动不利,起动时间长, 对电动机不利。改进的方法是采用双斜坡起动,如图 2-9所示。输出电压先迅速升至 U(U ,为电动机起动所需的最小转矩所对应的电压值),然后按设定的斜率逐渐升高电压。 直至达到额定电压,初始电压和电压上升率可根据负载特性调整。在加速斜坡时同期闻, 电动机电压逐渐增加,加速斜坡时间在一定时间范围内可调整,加速斜坡时间一般在2 60秒之间。这种起动方式的特点是起动电流相对较大,但起动时间相对较短,适用于重 载起动的电动机。图2-9电压斜坡启动波形(3)转矩控制起动主要用于重载起动,如图 2-10所示。它是按照电动机的起动转矩线性上升

35、的规律 控制输出电压。具优点是起动平滑、柔性好、对拖动系统有利,同时减少对电网的冲击, 使最优的重载起动方式。具缺点就是起动时间较长。图2-10转矩控制启动波形(4)转矩加突跳控制起动转矩加突跳控制起动与转矩控制起动一样,也是用在重载起动的场合。所不同的是 在起动的瞬间用突跳转矩,克服拖动系统的静转矩,然后转矩平滑上升,可缩短起动时 问。但是,突跳会给电网发送尖脉冲,干扰其他负荷。转矩加突跳控制起动如图2-11所示。(5)电压控制起动电压控制起动是在保证起动压降一定的前提下使电动机获得最大的起动转矩,尽可能地缩短起动时间,是最优的轻载软起动方式,如图 2-12所示。图2-12电压控制起动波形3

36、软启动器的硬件电路设计3.1 主要器件的介绍3.1.1 KJ004 功能介绍该电路由同步检测电路、锯齿波形成电路、偏移电压、移电压综合比较放大电路和功相率放大电路四部分组成。元件引脚功能见表3-1:锯齿波的斜率决定于外接 R6、RW1 流出的充电电流和积分C1的数值。对不同的移项控制 V1,只有改变R1、R2的比例, 调节相应的偏移VP。同时调整锯齿波斜率电位器 RW1 ,可以使不同的移相控制电压获 得整个范围。触发电路为正极性型,即移相电压增加,导通角增大。R7和C2形成微分电路,改变R7和C2的值,可获得不同的脉宽输出。KJ004的同步电压为任意值表3-1 KJ004的引脚功能表功能输 出

37、空锯齿波形 成-Vee(1k Q空地同步输 入综合比 较空微分阻 容封锁调 制输 出+Vcc引线脚 号12345678910111213141516电路采用双列直插C16白瓷和黑瓷两种外壳封装,外型尺寸按电子工业部部颁标 准。半导体集成电路外型尺寸 SJ110O- 76R同同旧回同N同KJ004国0国图K目目国图3 -1 KJ004引脚图与分立元件的锯齿波移相触发电路相似,分为同步、锯齿波形成、移相、脉冲形成、 脉冲分选及脉冲放大几个环节。产4 us 心R1R7mu6R &S2浜 L V V z z4 7 1 R rivsr2V2DV) 9 v2BR1v176立年一DV5 DvV3Dv

38、161VVS9V15R21V13nVD7VS8入 '''.LvV5TUs V4 R148rm 7s V+ 15VVD1Rl31215VS53.4、 91112 1314图3-2 KJ004电路原理图KJ004参数及限制电源电压:直流+15V、-15V,允许波动 b% (由0%时功能正常)。电源电流:正电流 0 15mA负电源0 10mA。同步电压:任意值。同步输入端允许最大同步电流:6mA (有效值)。移相范围:170°(同步电压30V,同步输入电阻15KQ)。锯齿波幅度:10V (幅度以锯齿波平顶为准)。输出脉冲:(1)宽度:400小厂2ms(通过改变脉宽阻

39、容元件达到)。(2)幅度:13V(3) KJ004最大输出能力:100mA (流出脉冲电流)。(4)输出管反压:BVCEO18V (测试条件Ie 100正负半周脉冲相位不均衡 ±3°使用环境温度为四级:C:070c R:-5585c E:-4085c M:-55125c3.1.2 KJ041 功能介绍KJ041六路双脉冲形成器是三相全控桥式触发线路中常用的电路,它具有双脉冲形成和电子开关控制封锁双脉冲形成功能。 使用两个有电子开关控制的 KJ041电路组成逻辑控制,适用于正、反组可逆品闸管电力电子成套装置(如正、反逻辑无环流直流调速 的十二相晶闸管整流设备中)。主要参数及限

40、制(1)电源电压:DC +15V± 10%(2)电源电流: 0 20mA(3)输出脉冲最大负载电流:0 20mA(4)输出脉冲幅值:>1V(5)输入端二极管最高承受反压:> 30V(6)控制端正向电流:0 3mA(7)允许使用环境温度:I类品为-55+125 C; II类品为-55+85°C;出类品为-40+85° C; IV类品为-10+70° CFin 目闫口门口KJ041目 blLJLJLWIO 7图3-3 KJ041的引脚排列(引脚向下)各引脚的功能及用法:1)输出引脚引脚15:对应1与2的放大单元输入端;引脚14:对应3与2的放大单

41、元输入端;引脚13:对应3与4的 放大单元输入端;引脚12:对应4与5的或"输出端,使用中,接触发 或"输出端,使用中,接触发 或"输出端,使用中,接触发 或"输出端,使用中,接触发A相正半周晶闸管的功率C相负半周品闸管的功率B相正半周晶闸管的功率A相负半周晶闸管的功率放大单元输入端;引脚 11:对应 5 与 6 的“或”出端,使用中,接触发 C 相正半周晶闸管的功率放大单元输入端;引脚10:对应6 与 1 的“或”输出端,使用中,接触发 B 相负半周晶闸管的功率放大单元输入端;2)输入引脚:引脚1 和引脚4:对应于电网A 相正、负半周的触发脉冲输入端;

42、引脚2 和引脚5:对应于电网C 相负、正半周的触发脉冲输入端;引脚3和引脚6:对应于电网B相正、负半周的触发脉冲输入端;3)引脚16:工作电源输入端。KJ041的工作电源范围为318V,使用中一般接+15V 电源。4)引脚8 (GND):工作参考地端。使用中接用户系统供电电源的地端。5)弓I脚9 (NC):空脚。使用中,悬空。6)引脚7 (L):输出脉冲封锁端,该端高电平封锁输出。KJ041的输出引脚在L端为高电平时均变为低电平;而在L 端为低电平时,KJ041 的输出引脚按输入引脚的状态和 KJ041 的工作机理正常输出脉冲。使用中该端接保护电路的输出。3.2 主电路的选择在晶闸管交流调压系

43、统中,晶闸管可以借负载电流波形过零而自行关断,不需另加换流电路,所以其主要优点是线路简单、调压装置体积小,价格低廉、使用及维修方便。本系统采用晶闸管相控调压的技术,采用图3-1 所示的主电路,用六个两两反向并联的晶闸管串连在电机主供电回路中。图3-4交流调压主电路3.2.2晶闸管相控调压原理品闸管调压单相等效电路如图 3-5所示,其中Zl为电机一相等效阻抗,Ui为电网相电压,Ul为晶闸管输出电压。设Ui =42U sin wt1q uL 4图3.6晶闸管输出电压波形图3-5晶闸管单相调压电路图3-5为一路品闸管输出波形示意图。晶闸管控制角日和功率因数角中决定了晶闸管的输出电压值。晶闸管正负半周

44、的触发是对称的,晶闸管的输出电压有效值 式(3-1)计算:u。可由Ul=V,'0( 2U sin wt ) d (wt )+V2u sin wt ) d (wt。=U /卜元 + 中 一8 ) + (sin26一sin2中)=f (U ,日,平)公式(3-1)可见,Ul是晶闸管控制角6、功率因数角邛及供电电压U的函数。当供电电压不变时,通过改变晶闸管的控制角,可以改变晶闸管的输出电压。3.3 主回路设计3.3.1 主回路电路 软起动器主回路设计电路如图3-7所示图3-7主回路电路采用三组反并联品闸管组成调压电路。 在三组晶闸管和三相供电电源之间接入接触 器,软起动时,接触器断开,软起动

45、完成后接触器闭合。软停车开始时,接触器再次打 到双向晶闸管端,软起动器投入到停车运行,如此重复来完成软起动和软停车。在三相 电源侧通过隔离电路得到软起动器同步信号;在晶闸管输出侧即R、S、T通过电阻分压而得到较低幅值的三相电压,再经过整流电路送入单片机做故障检测。而 TAl , TA2 年TA3表示为霍尔传感器电流输出,该电流信号通过整流电路后转变成电压信号输入 到控制回路5。3.3.2 晶闸管参数选择品闸管的选择参数很多,但用于应用于软起动时,主要是额定电压、额定电流的计 算与选择。品闸管由于过电流过电压能力低,又常常工作在不同的电流波形情况下,给 额定电流的选择带来一定的困难,如若额定值选

46、择不当,会造成不必要的损失或浪费。 根据实际工作条件,在满足需要的前提下,应尽量降低品闸管的定额,以减少设备投资 需满足两个条件。首先,晶闸管的正、反向峰值电压UDRM 和 URRM 应为晶闸管实际承受最大峰值电压Um的23倍,即Udrm/rrm=(23)Um。在本文设计中电机为 220V的三步电动机,根 据公式计算可得晶闸管耐压在 622V 933V范围内。其次,晶闸管的额定通态电流I TAV 指的是工频正弦半波平均值,其对应的有效值应满足Irms=1.57Itav。为使晶闸管在工作过程中不因实际有效值应在乘以安全系数1.52后才能等于1.57 Itavo本文中使用的异步电机功率 4KW,额

47、定电流0. 55Ao由于异 步电机在直接起动时的电流为 67倍的额定电流。因此晶闸管的Itav范围在3. 3A 3 85A。3.3.3 晶闸管触发电路本设计触发电路原理是首先用同步变压器对电网电压进行采样并降压,之后输入KJ004 用来产生单脉冲,通过调节分压电阻可以实现对单脉冲占空比的调节,通过模拟开关4066来实现对KJ004宽窄脉冲模式的变换,使KJ004输出宽脉冲或者窄脉冲,KJ042则产生高频调制波对KJ004 输出的宽脉冲或窄脉冲进行高频调制,使其输出宽窄脉冲列,当 KJ004 处于宽脉冲方式时,KJ004 输出直接加到驱动电路,而KJ004 处于窄脉冲方式时单脉冲(3 片 KJ0

48、04 产生 6 路 )输入到KJ041 合成双脉冲,每组双脉冲相位相差60°,用于触发整流桥电路。如图 3-8 为同步信号为锯齿波的触发电路,其输出可为双窄脉冲(适用于有两个晶闸管同时导通的电路),也可为单窄脉冲。电路结包括三个基本环节:脉冲的形成与放大、锯齿波的形成和脉冲移相、同步环节6。此外,还有强触发和双窄脉冲形成环节。U/0GtR劫5 V1611R旦R7VD1尽R6将VD,V2R9西VDV6V4V西VD4V73VDW3V83RoRI2Ri、VDWiV双 “VRR5TVDW4仟VDW5IV121R3£1竺IFW,R22卜1314偏移电压(-)旦3 ,一1_o 移相 电

49、压一 (+)图3-8脉冲发生电路图1、脉冲形成环节V4、V5脉冲形成V7、V8脉冲放大控制电压Uco加在V4基极上。Uco=0时,V4截止。V5饱和导通。V7、V8处于截止状 态,无脉冲输出。电容 C3充电,充满后电容两端电压接近 2E1(30V)时,V4导通,A点 电位由+E1(+15V)下降到1.0V左右,V5基极电位下降约-2E1(-30V) , V5立即截止。V5 集电极电压由-E1(-15V)上升为+2.1V, V7、V8导通,输出触发脉冲。电容 C3放电和反 向充电,使V5基极电位上升,直到Ub5>-E1(-15V) , V5又重新导通。使V7、V8截止,输 出脉冲终止。脉冲

50、前沿由V4导通时刻确定,脉冲宽度与反向充电回路时间常数R11C3有关。电路的触发脉冲由脉冲变压器 TP二次侧输出,其一次绕组接在V8集电极电路中。2、锯齿波的形成和脉冲移相环节3、同步环节4、双窄脉冲形成环节内双脉冲电路由V5、V6构成 或"门。当V5、V6都导通时,V7、V8都截止,没有脉 冲输出,只要75、V6有一个截止,都会使V7、V8导通,有脉冲输出。第一个脉冲由本 相触发单元的uco对应的控制角a产生。隔60°的第二个脉冲是由滞后60°相位的后一相 触发单元产生(通过V6)。晶闸管触发电路总图如图3-9所示。3.3.4较差,短时间内的过电压、过电流都可能

51、造成元件损坏。为了使晶闸管能正常工作,除 了合理的选择元件外,还必须对过电流,过电压的发生采取保护措施。过电流保护品闸管设备发生过电流有可能是晶闸管损毁、触发电路或控制系统有故障等。针对 这些情况,除了用软件来实现保护外,还可以在硬件电路中加入快速熔断器来保护品闸 管的过电流。(2)过电压保护我们知道品闸管有一个重要的特性参数,即断态电压临界上升率du/dt。它表明晶闸管在额定结温和门极断路条件下,使晶闸管从断态转入通态的最低电压上升率。若电 压上升率过大,超过了晶闸管的电压上升率的值,则会在无门极信号的情况下开通。即 使此时加于晶闸管的正向电压低于其阳极峰值电压,也可能出现这种情况7。为了限

52、制电路电压上升率过大,确保品闸管安全运行,本设计在晶闸管两端并联 RC阻容吸收网络,利用电容两端电压不能突变的特性来限制电压上升率。如图 3-7中所示。因为电路总是存在电感的,所以与电容C 串联电阻R 可起阻尼作用,它可以防止R、 L、 C 电路在过渡过程中,因振荡在电容器两端出现的过电压损坏晶闸管。同时,避免电容器通过晶闸管放电电流过大,造成过电流而损坏晶闸管。3.4 电压检测回路在电压检测回路中,尽量实现以下三个功能。其一是同步信号的检测功能,采样三相电压的自然换相点,它作为晶闸管脉冲触发信号的同步信号;其二是通过检测晶闸管输出端可以得到晶闸管导通时刻的检测,以便做电压反馈和缺相故障检测;

53、其三是将三相晶闸管输出电压信号通过电阻降压后转变成直流信号,再经 A/D 转换后送入到单片机中,作为过压或欠压保护的信号。3.4.1 同步信号检测为了保证三相交流调压器主回路中各个晶闸管的触发脉冲与其阳极电压保持严格的相位关系。在电机软起动器的设计过程中,同步信号检测是很重要的一个环节。只有准确的测量出电压的过零点,才能精确的控制晶闸管的导通角,从而实现对电机两端电压的无极加载,完成软起动的功能。采用如图3-10 所示的电路作为电压同步信号检测电路 8。从图中可以看出,这个电路的功能就是将由电源侧来的线电压正弦信号转为低压方波信号来供单片机进行处理分析。由于这里的信号是从高压转为低压送入单片机

54、处理的,因此要利用一块光耦对高低压信号进行隔离,这样保证了这两种信号可以互不干扰地分离处理。整个工作过程大体是这样的:由电源侧来的线电压信号经过2 个电阻和1 个二极管,变成半波交流信号,这个交流信号在正半波时触发光耦导通,从而使得右侧输入到单片机的是高电平信号;而当光耦左侧交流信号处于低电平时,光耦则截止。那么右侧输入到单片机的信号也就是低电平。这样周而复始,单片机所得到的就是幅值为 5V 的方波信号,周期等同于电源的周期即工频50Hz, 而高低电平持续的时间也基本与电源侧正负交流信号所持续的时间大致相同,虽然其间存在着一定的时延,但这可以通过软件进行补偿,从而既简化了外围硬件电路的设计,又

55、得到了与电源电压同步的信号,为下面给出晶闸管触发信号提供了工作电压零点的基准。图中右端接主控单片机芯片。这个电路的优点在于:一方面,在起动未开始或是开始瞬间,这个电路就可以检测到器件电压零点;另外,由于输入的交流信号是直接从电源侧获取的,因此这就不需要 像其他电路那样需要先利用变压器取得交流信号再进行处理,这样就既节省了线路板的空间,又节约了成本90图3-10同步信号检测电路同时,可以利用图3-10这个电路(以下称为电路I)和另一套与电路I基本相同的电 路(以下称为电路II)配合,进行电源的相序判断和缺相检测。简要介绍一下工作原理。电路II和电路I结构基本相同,存在的区别就是,假设电路 I的输入侧连接电源的U、 V两相,而电路II输入侧连接的就是电源的 V、W两相,且输出信号是分别送入主控 单片机芯片的外部中断输入口。我们

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论