




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、班级:一对一所授年级+科目:高一数学授课教师:课次:第次学生:上课时间:教学目标熟练掌握求函数值域的方法教学重难点求函数值域的方法互动乐学师生互动,善教乐学求函数值域快速练习一选择题1. (2006?陕西)函数f (x)= (x R)的值域是()1+JA.(0, 1)B.(0, 1C.0 , 1)D. 0 , 1考点:函数的值域。811365分析: 本题为一道基础题,只要注意利用x2的范围就可以.解答: 解:T函数f (x) =(x R), A 1+x2 1,所以原函数的值域是(0, 1, r 1+f点评:注意利用x20 ( x R).解: 2x 1)利用反# / 10比例函数图象求出函数的值
2、域.解答:1=-2-1 1+/1+/y=一-,得 x2解法一:y=y解法二:由2/ 1+x 1 , 0v21+x2 0,解得-1v yw 1.# / 10# / 10点评:解法三:令 x=ta n 0 (-K27TQi、血 1 - tan 0),贝廿 y=1十tan2日=cos2 0 .此类分式函数的值域通常采用逆求法、分离变量法,应注意理解并加以运用.# / 10# / 10-n V 2 0 V n ,- 1V cos2 0W 1,即-1V yW 1.5.在区间(1, +8)上不是增函数的是( C )B.1 -A. y=2x -1考点:分析:函数单调性的判断与证明。811365C.y=2x2
3、- 6xD.y=2x2- 2x由于函数y=2x - 1在R上是增函数,故排除 A,# / 10# / 10由7- - - -在区间(1, +8)上是增函数,故排除 B.X利用二次函数的图象特征和性质可得C满足条件,应排除 D.解答:解:由于函数y=2x - 1在R上是增函数,故排除 A.由于函数尸-丄在区间(1,+8)上是增函数,故尸-一一1在区间(1 , +8)上是增函数,故排# / 10# / 10除B.由于二次函数y=2x2 - 6x的对称轴为上是减函数,故它在区间(1, +8)由于二次函数y=2x2 - 2x的对称轴为X* ,开口向上,故函数在三 上不是增函数,故满足条件._1xp,+
4、8)上是增函数,在(-8,-,故函数在丄,+8)上是增函数,在(-8,上是减函# / 10数,故它在区间(1, +8)上是增函数,故排除 D.点评:本题主要考查函数的单调性的判断和证明,属于基础题.二.填空6.函数 一、_工的值域为-8, 1分析:先确定函数的定义域,再考查函数在定义域内的单调性,根据函数的单调性来确定函数的值 域.互动乐学师生互动,善教乐学解答:解:函数_,的定义域是(-8,1,且在此定义域内是减函数, x=1时,函数有最大值为1, xt-8时,函数值 yi-g,函数:j勺值域是(-8,1.点评:先利用偶次根式的被开方数大于或等于0求出函数的定义域,再判断函数的单调性,由函数
5、的单调性确定函数的值域.7 函数的值域是(-8, 1 ) U( 1 , +8),1+115尸敖-4x+3的值域是(0, 5分析:(1)把原函数化为y=1 -,根据反比例函数的性质即可求解;X+1(2)先把函数化为:2yx2- 4yx+3y - 5=0,根据判别式厶0即可得出函数的值域.解答:解:(1)T函数尸,函数的值域为(-8,1)U( 1 , +8);=1 -1+(2)原式可化为:2yx - 4yx+3y - 5=0, =16y2-8y (3y - 5) 0,二 y ( y - 5) 0,二 0y0),则F+1 x= 2=5=(t+1) 22 112在t 0上的值域问题,问题转化为求函数
6、f (t)因为t 0时,函数f (t )有最小值f (0)于.无最大值,故其值域为-:,+m).即原函数的值域为二,+R).点评:本题主要考查用换元法求值域以及二次函数在闭区间上求值域问题.换元法求值域适合于函数 解析式中带根式且根式内外均为一次形式的题目.9 .函数 f (x) =x+|x - 2| 的值域是 _2 , +8).分析:根据函数的解析式,去绝对值符号,根据函数的单调性求得函数的值域.3 / 10www.hudonglexuexom师生互动,善教乐学解答:解:因为当x (-s,2时,f (x) =2;当 x ( 2, +s)时,f (x) =2x- 2 2,故 f (x )的值域
7、是2 , +s).点评:本题考查函数的值域,去绝对值符号是解题的关键,属基础题.-m, 210.已知函数f(I)=2Vk+1 -工,则函数f (x)的值域为分析:根据函数解析式的形式:采取换元法,令t=r, t 0,转化为二次函数f(t)=2t -1 +i 在0 , +s)上求函数的值域,禾用配方法即可求得结果.解答: 解:令 t= V对X t 0,贝y x=t2- 1 , f (t) =2t - t2+ 仁-(t - 1) 2+2, t 0, f ( x)w 2,.函数 f (x)的值域为(-s,2.点评:本题考查利用换元法求函数的值域,体现了转化的思想方法,同时考查二次函数在定区间上的 最
8、值问题,注意换元后引进新变量的范围,是易错点,属基础题.11.函数的值域f (x) =2x - 3+的值域是(-s, 4分析:令 7=t,将函数转化成关于t的二次函数求解.# / 10www.hudonglexuexom师生互动,善教乐学# / 10www.hudonglexuexom师生互动,善教乐学解答:解:令13 - 4x=t,t0,贝U x= y= 丄-丄 |二,当且仅当t=1时取等zii故所求函数的值域为(-s, 4,点评:通过换元将原函数转化为某个变量的二次函数,利用二次函数的最值,确定原函数的值域换元法是一种重要的数学解题方法,掌握它的关键在于通过观察、联想,发现与构造出变换式(
9、或新元换旧式、或新式换旧元、或新式换旧式)-s, 112函数f (只)二1 - 3心? 一 q疋2)的值域是6耳分析:已知f (x)的定义域,利用导数判断函数 f (x)的单调性,然后再求其值域; 解答: x 2,二 f( x)v 0 , f ( x)为减函数;f (x ) f ( 2) =1, 函数f (x)的值域为(-s,1,故答案为(-s,1.曰解:函数f点评:此题考查函数的值域,利用导数先判断函数的单调性,再求值域,是一种新的方法,同学们要 掌握.13 函数的值域:y=J _严_脑_ 5为0 , 2# / 10www.hudonglexuexom师生互动,善教乐学分析:设卩=-x2-6
10、x- 5,欲求原函数的值域, 只须考虑 卩的取值范围即可, 根据二次函数的图象与 性质即可求得卩的取值范围,从而问题解决.解答:解析:设= - x - 6x - 5 (卩0),则原函数可化为口 .又 1 =- x2- 6x - 5= -( x+3) 2+4 4,. 0 卩 4,故0 , 2,.:-.的值域为0 , 2.故答案为:0 , 2# / 10www.hudonglexuexom师生互动,善教乐学# / 10www.hudonglexuexom师生互动,善教乐学点评:本题以二次函数为载体考查根式函数的值域,属于求二次函数的最值问题,属于基本题.# / 10师生互动,善教乐学互訓乐学www
11、* 14.函数y=x - 2x的定义域为0, 1, 2, 3,那么其值域为 - 1 , 0, 3分析:根据所给的函数的解析式和定义域,做出当自变量取定义域中的不同值时的对应的值域中的结 果,写出值域.解答:解:函数y=x2-2x的定义域为0 , 1, 2, 3,当 x=0 时,y=0 ;当 x=1 时,y= - 1;当 x=2 时,y=0 ;当 x=3 时,y=3综上可知值域对应的集合是 - 1, 0, 3故答案为: - 1, 0, 3点评:本题考查函数的值域,本题解题的关键是求出定义域对应的函数值,做出值域对应的集合,本 题是一个基础题.15.下列函数中在(-a,0)上单调递减的 丁 一;y
12、=1 - x2;y=x2+x::.匸】_:.分析:对于函数在(-a, - 1) 上单调递增,可判定是否符合题意;对于 y=1 - x2在(-a, 0)解答:上单调递增,故不符合题意;对于根据开口向上与对称轴为x=,可判定单调性;对于根据定义域为(-a,1 ),以及复合函数的单调性可知是否正确.Tx+ly=1 - x2在(-a,0)上单调递增,故不符合题意;解:,在(-a, -1 )上单调递增,故不符合题意;2y=x +x开口向上,对称轴为 x=在(一a 叮在(,上单调递减,(-,+a)上单调递219.求下列函数的值域# / 1019.求下列函数的值域# / 10增,故不符合题意;屮1 一工,定
13、义域为(-a, 1),在(-a, 1) 上单调递减,故正确 故答案为:点评:本题主要考查了二次函数、分式函数、根式函数单调性的判断,属于基础题.16.已知二次函数 f (x) =2x2-4x+3,若f (x)在区间2a , a+1上不单调,则a的取值范围是分析:二次函数图象的对称轴为直线 x=1,开口朝上,说明在区间(-a,1)上函数为减函数,在区间(1, +a)上是增函数.函数在区间2a , a+1上不单调,说明在此区间上函数有减也有增,因此不难求出实数 a的取值范围.解答:-4,即直线x=1, 2X2函数f (x)在区间2a , a+1上不单调,说明直线 x=1在区间2a , a+1内部因
14、此列式:2av 1 v a+1所以a的取值范围是 0 va 0,则m的取值范围是.分析:先将题中条件:f ( m- 1) - f (2m- 1) 0”移项得:f (m- 1)f (2m- 1),再结合f (x)是定义在-3, 3上的减函数,脱去符号:“ f ”,转化为关于 m的一元不等式组,最后解得实 数m的取值范围,必须注意原函数的定义域范围.解答:解:T f ( x)在-3, 3上是减函数.由 f ( m- 1)- f (2m- 1 ) 0,互动乐学www.hudo师生互动,善教乐学得 f (m 1) f (2m 1)函数f (x)在-3, 3上是减函数,解得0 vm2,.m的取值范围是(
15、0, 2.-3虬m- 13“ -31 - 2ni3即id - 1 0求原函数的值域.解:(1)用分离变量法将原函数变形为:y= =2+ .K- 3 K 一 E:=2+19.求下列函数的值域# / 1019.求下列函数的值域# / 10工0.a y工2,即函数值域为y|y R且y工2.(2) 用配方法将原函数变形为:y= ( x 1) 2+1,根据二次函数的性质, 在区间0 , 3上,当x=1时,函数取最大值1,当x=3时,函数取最小值是-3, 则原函数的值域是-3, 1.(3) 由 1 x 0,得1Wx 1, 0vv 2,- 1 v 1 +lt2Kl+2xv 1,.所求值域为(-1, 1)19
16、.求下列函数的值域# / 1019.求下列函数的值域# / 10点评:本题考查了求函数值域的方法,即分离常数法,配方法和换元法等, 注意每种方法适用的类型.19.求下列函数的值域# / 10师生互动,善教乐学(1)1-xv=-分析:(1)本题宜用分离常数法求值域,其定义域为x|x工0函数可以变为y=- 1亠再l+iq由函数的单调性求值域.(2) 令| -:,=t,将函数转化成关于 t的一道定函数在定区间上的值域问题,通常利用配方法,结合函数的图象及函数在区间上的单调性,求得相应的最值,从而得函数的值域.2(3) 先把函数化为:2yx - 3yx+y - 1=0,根据判别式30 即可得出函数的值
17、域.解答:解:(1)由题函数的定义域为x|x工0丁 =- 1+工-1故函数的值域为y|y工-1y L+x 1+x2呷(2 ):令汕t , t 0,则 X= t ; 1 , y=*F - t -异(t 1) 2- 1-1 ,当且仅当t=1时取等号,故所求函数的值域为-1, +8),(3)原式可化为:2yx - 3yx+y -仁0,.A =9y - 8y (y - 1)0, y ( y+8 ) 0,. y 0 或 yw- 8,故答案为:(-8,- 8 U( 0, +8)点评:本题考查了函数的值域,属于基础题,关键是掌握函数值域的两种不同求法.(1)小题求值域采用了分离常数法的技巧,对于分式形函数单
18、调性的判断是一个好办法,注意总结这种技巧的 适用范围以及使用规律.(2)是通过换元将原函数转化为某个变量的二次函数,利用二次函数 的最值,确定原函数的值域. 换元法是一种重要的数学解题方法,掌握它的关键在于通过观察、 联想,发现与构造出变换式(或新元换旧式、或新式换旧元、或新式换旧式)20. 求下列函数的值域2 (I )尸一;(II )尸卞+Uit+1.K -H分析:(I )将函数变形为-1 ,因为x20,用观察分析法求值域即可.十1(II )先令被开方数大于等于0求出函数的定义域,然后判断出函数的单调性,进一步求出函数的值域.2 1 1解答:解:(I)二 ,Tx20,.0 1,.00),则原
19、函数可化为y=ET|,再配方法求得卩的范围,可得.的范围.(3)可用分离变量法:将函数变形,y=3x+l 3 (z - 2) +7,再利用反比例函数求解.(4)用换元法设t=.订 F 0,则2x=1 - t,原函数可化为2y=1 - t +4t,再用配方法求解解答:O 1- I(5)由1 - x 0 ? - 1WxW 1,可用三角换元法:设x=cosa , a 0 , n ,将函数转化为用三角函数求解y=cos a +sin a = Jsin ( a2(6 )由x +x+1 0恒成立,即函数的定义域为 R,用判别式法,将函数转化为二次方程( 求解.y - 2) x2+ ( y+1) x+y -
20、 2=0 有根+ 2(2)求复合函数的值域:设 卩=-x2- 6x - 5又t 卩=-x - 6x - 5= -( x+3)+4W 4,. 0W y=_5 的值域为0 , 2解: (1)(配方法)T y=3x 2- x+2=3 ( x-+= ; y=3x2 - x+2 的值域为12 12(卩0),则原函数可化为卩 W4,故. 0 , 2,(3)分离变量法:y=3h+1J3 J - 2) +7k-2一工0,二 3+X- 2x- 23k+1丰3,二函数y=(4)换元法(代数换元法):设t= V的值域为y R|y工30,贝U x=1 - t2,原函数可化为 y=1-12+4t= -(t - 2) 2+
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2026学年度人教版8年级数学上册《轴对称》专项测试试卷(附答案详解)
- 2024粮油食品检验人员试题预测试卷【网校专用】附答案详解
- 2024-2025学年注册公用设备工程师考试黑钻押题及完整答案详解【各地真题】
- 2025一级建造师考试黑钻押题【轻巧夺冠】附答案详解
- 2024年收银审核员考前冲刺练习试题及答案详解(历年真题)
- 借贷宝电子合同(标准版)
- 工程结算欠账合同(标准版)
- 期货从业资格之期货投资分析高分题库及答案详解【新】
- 2025年废旧电子产品回收处理与环保产业技术创新与应用研究报告
- 北京市东城区北京市文汇中学2025-2026学年九年级上学期9月月考英语试题(含答案)
- DB21-T 3464-2021 辽西北地区食叶草栽培技术规程
- 综合性医院疼痛科建设课件
- WES溢流堰堰面设计
- 水产品安全控制
- 养老服务公司经营范围(41个范本)
- 青少年脊柱侧弯筛查课件
- 北京十一学校2+4模式
- 第四章 解离平衡
- 小学生仪容仪表课件
- 初中语文中考复习 专题01 名著阅读之《朝花夕拾》(课内文言文+课外文言文)-2022年中考语文一轮复习黄金考点讲练测
- GB/T 38207-2019中国地理实体通名汉语拼音字母拼写规则
评论
0/150
提交评论