生物脱氮除磷工艺中的丝状菌_第1页
生物脱氮除磷工艺中的丝状菌_第2页
生物脱氮除磷工艺中的丝状菌_第3页
生物脱氮除磷工艺中的丝状菌_第4页
生物脱氮除磷工艺中的丝状菌_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、生物脱氮除磷工艺中的丝状菌自从活性污泥法问世以来,污泥膨胀一直是运行管理中的 一个难题。污泥膨胀有 3 个明显的特征:( 1)发生率比较高,在欧 洲大约有 50%的污水处理厂都存在污泥膨胀现象;( 2)具有普遍性, 几乎所有的活性污泥工艺都有污泥膨胀问题;( 3)后果严重,当污 泥膨胀发生时,大量的污泥随水流失,导致出水悬浮物增高,水质达 不到排放标准, 直至整个工艺运转失效, 而再恢复到正常状态又需要 很长的周期。近几十年来,国内外研究者对污泥膨胀问题进行了大量的研 究,并取得了一些进展, 但到目前为止还没有一个满意的理论解释或 有效的污泥膨胀控制措施 1 。随着人们对环境的要求日益提高,对

2、磷 和氮的排放标准要求日趋严格。 生物脱氮除磷工艺要求较长的泥龄以 满足硝化菌的生长 2 ,相应长泥龄污泥膨胀问题仍是运行管理中的一 个难题。为了解丝状菌在脱氮除磷工艺中的生长规律,本文用 21 个 月的时间,对芬兰索门诺亚污水处理实验厂的生物脱磷脱氮工艺进行 了丝状菌的种类和长度的检测。2 工艺的特征和实验方法索门诺亚污水处理实验厂的生物脱氮除磷工艺采用UCT工艺,为比较脱氮除磷的效果,污水厂设有 2 条并行的流程, 1#流程在 曝气池内装有 20%(体积比)的悬浮填料; 2 流程在曝气池内不装设悬浮填料。处理污水来自爱斯堡城市的市政污水,其中大约有10%勺小规模工业废水,运行参数和数据如表

3、 1和表2表1实验工艺的运行参数参数(单位)范围平均值水温(° C)7129.5F/Mkg0.08 0.1(BOD)/kg( MLSS) d0.12水力停留时间(h)7.3 8.17.7MLSS(曝气池)(g/L)3.8 4.44.1MLVS(曝气池)(g/L)2.5 2.862.68DO (曝气池)(g/L)2.5 4.93.7泥龄(d)12 1815进水流量(m3/h)5.2 5.85.5污泥回流率(%)90 130110消化污泥回流率()50 11080缺氧污泥回流率()100 140120表2实验工艺的出水水质参数单位1#流程2#流程总磷(PO-P)Mg(P)/L1.443.

4、0溶解性磷(PO4-P)Mg(P)/L0.812.0总氮Mg(P)/L21.015CODmg/L4951BODmg/L1620磷的去除率%8078氮的去除率%5066COD的去除率mg/L8685BOD的去除率mg/L88863 结果与讨论3.1丝状菌的长度在1#流程厌氧阶段,丝状菌的平均长度比好氧阶段低19.26 %,在2#流程厌氧阶段,丝状菌的平均长度比好氧阶段低7%这表明厌氧阶段有一定的抑制丝状菌生长的功能。由于1#曝气池内填设悬浮填料,1#流程丝状菌的平均长度比2#流程低66.02%;仅在曝气阶段,1#曝气池丝状菌群的平均长度比2#曝气池低62.52%。在运行期间,泥龄一直保持在15d

5、左右,运行处在稳定阶段, 并没有出现严重的丝状菌污泥膨胀情况。 在第7个月期间,为提高脱 磷脱氮的去除效率把泥龄增加到 30d,丝状菌长度明显增大并导致了 污泥膨胀。后来又不得不把泥龄降低到15d左右,才使运行又趋于稳定O3.2丝状菌的种类丝状菌的种类如表3和表4。数据表明主要丝状菌为微丝菌,其次为0675型和0914型,Nocardia III型菌只在生物泡沫中才出现。表31#流程的丝状菌种类丝状菌种类厌氧污泥缺氧污泥好氧污泥泡沫出现次数(次)优势度(%)出现次数(次)优势度(% )出现次数(次)优势度(%)出现次数(次)优势度(%)微丝菌4098.214098.434098.141499.

6、290675 型171.6461.5120.790914 型30.0730.21NocardiaII型30.0730.0730.0720.50取样分析次数40404014表42#流程的丝状菌种类丝状菌种类厌氧污泥缺氧污泥好氧污泥泡沫出现次数(次)优势度(%)出现次数(次)优势度(% )出现次数(次)优势度(%)出现次数(次)优势度(% )微丝菌2994.792995.432993.141493.140675 型213.43121.29172.2172.290914 型81.43102.93214.6473.07NocardiaII型20.0720.0741.290041 型20.3640.29

7、诺卡氏菌属.10.28取样分析次数292929143.3 分析讨论大量的镜检观察发现,在正常稳定条件下,丝状菌和菌胶团 菌组成一个互相依赖相互促进的共生关系。丝状菌位于菌胶团的内 部,当丝状菌生长伸出菌胶团, 大量新生的菌胶团菌又吸附和依附在 丝状菌的表面。正常情况下丝状菌和菌胶团菌的生长达到相对的平 衡,丝状菌始终被菌胶团菌包裹在里面。在污泥膨胀阶段,主要是菌 胶团菌的生长速度变慢, 致使丝状菌生长伸出菌胶团外面造成污泥膨 胀。分析其原因,造成菌胶团菌生长速度变慢的原因有:(1)外界条件不能满足正常生长繁殖 3 ,如食物缺乏、溶解氧不足、pH偏低、或微量元素比例不恰当。(2)微环境因素,尚若

8、大量的生物残渣不能被及时分离或分 解,会恶化微环境造成菌胶团菌大量死亡。 而丝状菌大多是腐生菌 4 食料来源来自死亡的菌胶团菌, 菌胶团菌大量死亡又为丝状菌提供了 充足的食物源, 又促进了丝状菌的过剩生长导致污泥膨胀。 在厌氧 缺氧好氧工艺中, 当回流污泥通过厌氧阶段时, 厌氧菌有分解部分 生物残渣的功能。4 结语生物营养素去除工艺中, 主要的丝状菌为微丝菌,其次为 0675 型和 0914 型。泥龄的增加会导致污泥膨胀,生物残渣的浓度是造成 长泥龄污泥膨胀的原因之一。 曝气池内装填悬浮填料对丝状菌的生长 有抑制作用。 厌氧阶段有分解生物残渣的功能, 可改善菌胶团菌的微 环境。生物脱氮基本原理

9、及影响因素 废水中存在着有机氮、氨氮、硝态氮等形式的氮,而其中以氨氮 和有机氮为主要形式。 在生物处理过程中, 有机氮被异养微生物氧化 分解,即通过氨化作用转化为成氨氮, 而后经硝化过程转化变为 NO3-N 和 NO2-N ,最后通过反硝化作用使硝态氮转化成氮气,而逸入大气。由此可见,进行生物脱氮可分为氨化硝化反硝化三个步骤。 由于氨化反应速度很快。 在一般废水处理设施中均能完成, 故生物脱 氮的关键在于硝化和反硝化。1 氨化作用1.1 概念氨化作用是指将有机氮化合物转化为氨态氮的过程, 也称为矿化 作用。1.2 细菌参与氨化作用的细菌成为氨化细菌。 在自然界中, 它们的种类很 多,主要有好氧

10、性的荧光假单胞菌和灵杆菌, 兼性的变形杆菌和厌氧 的腐败梭菌等。1.3 降解方式(分好氧和厌氧)在好氧条件下, 主要有两种降解方式, 一是氧化酶催化下的氧化 脱氨。另一是某些好氧菌,在水解酶的催化作用下能水解脱氮反应。在厌氧条件或缺氧的条件下, 厌氧微生物和兼性厌氧微生物对有 机氮化合物进行还原脱氨、水解脱氨和脱水脱氨三种途径的氨化反 应。2 硝化作用2.1 概念硝化作用是指将氨氮氧化为亚硝酸氮和硝态氮的生物化学反应,2.2 细菌这个过程由亚硝酸菌和硝酸菌共同完成。亚硝化菌有亚硝酸单胞菌属、亚硝酸螺杆菌属和亚硝酸球菌属。 硝酸菌有硝化杆菌属、 硝化球菌属。亚硝酸菌和硝化菌统称为硝化菌。2.3

11、反应过程包括亚硝化反应和硝化反应两个步骤。该反应历程为:亚硝化反应硝化反应总反应式发生硝化反应时细菌分别从氧化 NH和NO的过程中获得能量, 碳源来自无机碳化合物,如 C、HCO、CO等。假定细胞的组成为 C5 H7 N O2 ,则硝化菌合成的化学计量关系可表示为:亚硝化反应硝化反应2.4 特点从上式可以看出硝化过程的三个重要特点:NH的生物氧化需要大量的氧,大约每去除 1g的NMN需要 4.2gO2;硝化过程细胞产率非常低, 且难以维持较高胜物浓度, 特别是 在低温的冬季;硝化过程中产生大量的的质子(H),为了使反应能顺利进行, 需要大量的碱中和,其理论上大约为每氧化1g的NHkN需要碱度5

12、.57g(以 NaCC计)。2.5 硝化反应影响因素 温度在生物硝化系统中,硝化细菌对温度的变化非常敏感,在535C 的范围内,硝化菌能进行正常的生理代谢活动。当废水温度低于15C 时,硝化速率会明显下降,当温度低于 10C时已启动的硝化系统可 以勉强维持,硝化速率只有30C时的硝化硝化速率的25%。尽管温 度的升高,生物活性增大, 硝化速率也升高,但温度过高将使硝化菌 大量死亡,实际运行中要求硝化反应温度低于3 8C 2。 pH 值硝化菌对pH值变化非常敏感,最佳pH值是8.08.4,在这一 最佳 pH 值条件下,硝化速度,硝化菌最大的比值速度可达最大值。 Anthonison认为pH对硝化

13、反应的影响只是表观现象,实际起作用是 两个平衡 H+NH 二 NH+禾口 H+NO二 HNO中的 NH ( FA 禾口 HNO (FNA , pH通过这两个平衡影响FA和FNA的浓度起作用的。 溶解氧氧是硝化反应过程中的电子受体, 反应器内溶解氧高低, 必将影 响硝化反应得进程。 在活性污泥法系统中, 大多数学者认为溶解氧应 该控制在1.52.0mg/L内,低于0.5mg/L则硝化作用趋于停止。当 前,有许多学者认为在低 D0(1.5mg/L )下可出现SND现象。在DO> 2.0mg/L,溶解氧浓度对硝化过程影响可不予考虑。但DC浓度不宜太高,因为溶解氧过高能够导致有机物分解过快, 从

14、而使微生物缺乏 营养,活性污泥易于老化,结构松散。此外溶解氧过高,过量能耗, 在经济上也是不适宜的。 生物固体平均停留时间(污泥龄)为了使硝化菌群能够在连续流反应器系统存活, 微生物在反应器 内的停留时间(B c) n必须大于自养型硝化菌最小的世代时间(B c) minN,否则硝化菌的流失率将大于净增率,将使硝化菌从系统中流失殆 尽。一般对(B c) n的取值,至少应为硝化菌最小世代时间的 2倍以 上,即安全系数应大于 2。 重金属及有毒物质除了重金属外, 对硝化反应产生抑制作用的物质还有: 高浓度氨 氮、高浓度硝酸盐有机物及络合阳离子等。3. 反硝化作用3.1 概念反硝化作用是指在厌氧或缺氧

15、(DO<0.3-0.5mg/L)条件下,硝态 氮、亚硝态氮及其其它氮氧化物被用作电子受体而还原为氮气或氮的 其它气态氧化物的生物学反应。3.2 细菌这个过程反硝化菌完成。进行这类反应的细菌主要有变形杆菌属、 微球菌属、假单胞菌属、 芽胞杆菌属、产碱杆菌属、 黄杆菌属等兼性细菌,它们在自然界中广 泛存在。有分子氧存在时,利用 O2 作为最终电子受体,氧化有机物, 进行呼吸;无分子氧存在时,利用NO或者NO进行呼吸。研究表明, 这种利用分子氧和NO之间的转换很易进行,即使频繁交换也不抑制 其反硝化的进行。大多数反硝化菌能进行反硝化的同时将 NQ同化为NH+而供给细 胞合成之用,这也就是所谓同

16、化反硝化。只有当NOT作为反硝化菌唯 一可利用的氨源时Ne同化代谢才能发生。如果废水中同时存在NH+, 反硝化菌有限利用氨态氮进行合成。3.3 反硝化过程3.4 反硝化反应影响因素1. 温度反硝化细菌对温度变化虽不如硝化细菌那样敏感, 但反硝化效果 也会随温度变化而变化。温度越高,硝化速率也越高,在3035C时,DNR增至最大。当低于15C时,反硝化速率将明显降低;至 5C 时,反硝化将趋于停止。2. pH值pH值是反硝化反应的重要影响因素,对反硝化最适宜的 pH值是 6.57.5,在这个pH值的条件下,反硝化速率最高,当 pH值高于8 或者低于 6 时,反硝化速率将大为下降。3. 外加碳源反硝化菌是属于异养型兼性厌氧菌,在厌氧的条件下以 NOx-N 为 电子受体,以有机物(有机碳)为电子供体。由此可见,碳源是反硝 化过程中不可少的一种物质,进水的C/N直接影响生物脱氮除氮效果 的重要因素。一般BOD/TK*34,有机物越充分,反应速度越快, 当废水中BOD/TK小于3时,需要外加碳源才能达到理想的脱氮目的。 因此碳源对反硝化效果影响很大。 反硝化的碳源来源主要分三类: 一 是废水本身的组成物,如各种有机酸、淀粉、碳水化合物等;二是废 水处理过程中添加碳源, 一般可以添加附近一些工业副

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论