




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、24.2.2 切线长定理根据圆的轴对称性,存在与根据圆的轴对称性,存在与A A点重合点重合的一点的一点B B,且落在圆,连接,且落在圆,连接OBOB,则它,则它也是也是oo的一条半径。的一条半径。OPAB你能发现你能发现OAOA与与PAPA,OBOB与与PBPB之间的关系吗?之间的关系吗?PA、PB所在的直线分别是所在的直线分别是 o两条切线两条切线。在经过圆外一点的切线上,这一点和切点之间在经过圆外一点的切线上,这一点和切点之间的线段的长叫做的线段的长叫做这点到圆的切线长这点到圆的切线长OPAB切线切线与与切线长切线长是一回事吗?是一回事吗? 它们有什么区别与联系呢?它们有什么区别与联系呢?
2、 切线和切线长是两个不同的概念:切线和切线长是两个不同的概念: 1、切线是一条与圆相切的直线,、切线是一条与圆相切的直线,不能度量不能度量; 2、切线长是、切线长是线段线段的长,这条线段的两个端点的长,这条线段的两个端点分别是圆外一点和切点分别是圆外一点和切点,可以度量可以度量。OPAB OABP思考思考:已知已知 O切线切线PA、PB,A、B为切点,把圆沿着直线为切点,把圆沿着直线OP对折对折,你能你能发现什么发现什么?12请证明你所发现的结论。请证明你所发现的结论。APOBPA = PBOPA=OPB证明:证明:PAPA,PBPB与与OO相切,点相切,点A A,B B是切点是切点 OAPA
3、OAPA,OBPBOBPB 即即OAP=OBP=90 OA=OB,OP=OP RtRtAOPRtAOPRtBOP(HLBOP(HL) ) PA = PB OPA=OPB试用文字语言试用文字语言叙述你所发现叙述你所发现的结论的结论PA、PB分别切分别切 O于于A、BPA = PBOPA=OPB 从圆外一点引圆的两条切线,从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。两条切线的夹角。 几何语言几何语言:反思反思:切线长定理为证明:切线长定理为证明线段相等线段相等、角相角相等等提供新的方法提供新的方法OPABAPOB 若连结
4、两切点若连结两切点A A、B B,ABAB交交OPOP于点于点M.M.你又能得你又能得出什么新的结论出什么新的结论? ?并给出证明并给出证明. .OP垂直平分垂直平分AB证明:证明:PAPA,PBPB是是OO的切线的切线, ,点点A A,B B是切点是切点 PA = PB OPA=OPB PABPAB是等腰三角形是等腰三角形,PMPM为为顶角顶角的平分线的平分线 OP垂直平分垂直平分ABMAPO。B 若延长若延长PO交交 O于点于点C,连结,连结CA、CB,你又你又能得出什么新的结论能得出什么新的结论? ?并给出证明并给出证明. .CA=CB证明:证明:PAPA,PBPB是是OO的切线的切线,
5、 ,点点A A,B B是切点是切点 PA = PB OPA=OPB PC=PCPC=PC PCA PCB AC=BCAC=BCC。PBAO(3)连结圆心和圆外一点)连结圆心和圆外一点(2)连结两切点)连结两切点(1)分别连结圆心和切点)分别连结圆心和切点反思:在解决有关圆的切线长问题时,往往需要我们构建基本图形。(2)已知OA=3cm,OP=6cm,则APB= PABCO60(4)OP交 O于M,则 , M牛刀小试牛刀小试(3)若P=70,则AOB= 110(1)若PA=4、PM=2,求圆O的半径OA OA=3已知:如图已知:如图,PA,PA、PBPB是是OO的切线,切点分别的切线,切点分别是
6、是A A、B B,Q Q为为ABAB上一点,过上一点,过Q Q点作点作OO的切线,的切线,交交PAPA、PBPB于于E E、F F点,已知点,已知PA=12CMPA=12CM,求,求PEFPEF的周长。的周长。EAQPFBO易证易证EQ=EA, FQ=FB,EQ=EA, FQ=FB, PA=PB PA=PB PE+EQ=PA=12cmPF+FQ=PF+FQ=PB=PAPB=PA=12cm=12cm周长为24cm探究:探究:PA、PB是是 O的两条切的两条切线,线,A、B为切点,直线为切点,直线OP交于交于 O于点于点D、E,交,交AB于于C。BAPOCED(1)写出图中所有的垂直关系)写出图中
7、所有的垂直关系OAPA,OB PB,AB OP(3)写出图中所有的全等三角形)写出图中所有的全等三角形AOP BOP, AOC BOC, ACP BCP(4)写出图中所有的等腰三角形)写出图中所有的等腰三角形ABP AOB(2)写出图中与)写出图中与OAC相等的角相等的角OAC=OBC=APC=BPC 练习练习1.(口答)如图所示(口答)如图所示PA、PB分别切分别切圆圆O于于A、B,并与圆,并与圆O的切线分别相交于的切线分别相交于C、D,已知,已知PA=7cm,(1)求求PCD的周长的周长(2) 如果如果P=46,求求COD的度数的度数C OPBDAE切线长定理切线长定理 从圆外一点引圆的两
8、条切线,它从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两们的切线长相等,圆心和这一点的连线平分两 条切线的夹角条切线的夹角。 APO。BECDPA、PB分别切分别切 O于于A、BPA = PB ,OPA=OPBOP垂直平分垂直平分AB 切线长定理为证明切线长定理为证明线段相等,角线段相等,角相等,弧相等,垂直关系相等,弧相等,垂直关系提供了理论提供了理论依据。必须掌握并能灵活应用。依据。必须掌握并能灵活应用。oooo外切圆圆心:外切圆圆心:三角形三边三角形三边垂直平分线的交点垂直平分线的交点。外切圆的半径:外切圆的半径:交点到三交点到三角形任意一个定点的距离。角形任意一个
9、定点的距离。三角形外接圆三角形外接圆三角形内切圆三角形内切圆o内切圆圆心:内切圆圆心:三角形三个三角形三个内角平分线的交点。内角平分线的交点。内切圆的半径:内切圆的半径:交点到三交点到三角形任意一边的垂直距离。角形任意一边的垂直距离。A AA AB BB BC CC C 练习练习1.1.如图,如图,ABCABC中中,C =90,C =90 , ,它的内它的内切圆切圆O O分别与边分别与边ABAB、BCBC、CACA相切于点相切于点D D、E E、F F,且,且BD=12BD=12,AD=8AD=8,求,求OO的半径的半径r.r.OEBDCAF例例2 、如图,四边形、如图,四边形ABCDABCD的边的边ABAB、BCBC、CDCD、DADA和圆和圆OO分别分别相切于点相切于点L L、M M、N N、P P,求证:求证: AD+BC=AB+CDAD+BC=AB+CDDLMNABCOP证明:由切线长定理得证明:由切线长定理得AL=APAL=AP,LB=MB,NC=MCLB=MB,NC=MC, DN=DPDN=DPAL+LB+NC+DN=AP+MBAL+LB+NC+DN=AP+MB+MC+DP+MC+DP 即即 AB+CD=AD+BCAB+CD=AD+BC补充:补充:圆的外切四边形的两组对边的和相等圆的外切四边形的两组对边的和相
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年生物质干馏热解系统项目建议书
- 2025年买卖合同违约情况分析
- 2025有关个人借款的合同范本标准版
- 2025网络喜剧节目合作合同
- 医院安全生产法培训课件
- 2025商场店铺租赁合同范本参考
- 2025年地下空间开发项目建议书
- 《木屑的奇迹-课桌设计》课件
- 2025年医用材料及制品项目合作计划书
- 2025大连合同终止证明书模板
- 2024年新正电工技术服务限公司招聘273人(内蒙古)高频难、易错点500题模拟试题附带答案详解
- 建筑施工安全检查标准JGJ59-2011
- 2024秋期国家开放大学《可编程控制器应用实训》一平台在线形考(形成任务7)试题及答案
- 电子政务概论-形考任务5(在线测试权重20%)-国开-参考资料
- 古代小说戏曲专题-形考任务2-国开-参考资料
- 走进川端康成的文学世界智慧树知到答案2024年吉林师范大学
- DG∕TJ 08-2220-2016 桥梁水平转体法施工技术规程
- 教学评一体化的小学语文低段单元作业设计方法
- 手术室不良事件警示教育
- (高清版)DZT 0079-2015 固体矿产勘查地质资料综合整理综合研究技术要求
- 2023年全国统一高考理综化学部分(全国甲卷)(含答案与解析)
评论
0/150
提交评论