付费下载
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、.function D = C4_5(train_features, train_targets, inc_node, region)% Classify using Quinlan's C4.5 algorithm% Inputs:% features - Train features%targets- Train targets%inc_node- Percentage of incorrectlyassigned samples at a node%region- Decision region vector: -x x -yy number_of_points% Outputs
2、% D- Decision sufrace%NOTE: In this implementation it is assumed that a feature vector with fewer than 10 unique values (the parameter Nu)%is discrete, and will be treated as such. Other vectors will be treated as continuousNi, M= size(train_features);inc_node= inc_node*M/100;Nu= 10;%For the decisio
3、n regionN= region(5);mx= ones(N,1) * linspace(region(1),region(2),N);my= linspace (region(3),region(4),N)' *ones(1,N);flatxy= mx(:), my(:)'%Preprocessing%f, t, UW, m= PCA(train_features,train_targets, Ni, region);%train_features = UW * (train_features -m*ones(1,M);1 / 6.%flatxy= UW * (flatxy
4、 - m*ones(1,N2);%Findwhichoftheinputfeaturesarediscrete,anddiscretisize the corresponding%dimension on the decision regiondiscrete_dim = zeros(1,Ni);fori = 1:Ni,Nb = length(unique(train_features(i,:);if(Nb <= Nu),%This is a discrete featurediscrete_dim(i)= Nb;H, flatxy(i,:) =high_histogram(flatxy
5、(i,:), Nb);endend%Build the tree recursivelydisp('Building tree')tree= make_tree(train_features,train_targets, inc_node, discrete_dim,max(discrete_dim), 0);%Make the decision region according to the treedisp('Building decision surface using the tree')targets= use_tree(flatxy, 1:N2, t
6、ree,discrete_dim, unique(train_targets);D= reshape(targets,N,N);%ENDfunction targets = use_tree(features, indices, tree, discrete_dim, Uc)%Classify recursively using a treetargets = zeros(1, size(features,2);if(tree.dim = 0)%Reached the end of the tree2 / 6.targets(indices) = tree.child;breakend%Thi
7、s is not the last level of the tree, so: %First, find the dimension we are to work on dim = tree.dim;dims= 1:size(features,1);%And classify according to itif(discrete_dim(dim) = 0),%Continuous featurein= indices(find(features(dim,indices) <= tree.split_loc);targets= targets +use_tree(features(dim
8、s, :), in, tree.child(1),discrete_dim(dims), Uc);in= indices(find(features(dim,indices) > tree.split_loc);targets= targets +use_tree(features(dims, :), in, tree.child(2),discrete_dim(dims), Uc);else%Discrete featureUf= unique(features(dim,:);fori = 1:length(Uf),in= indices(find(features(dim,indic
9、es) = Uf(i);targets= targets +use_tree(features(dims, :), in, tree.child(i),discrete_dim(dims), Uc);endend%END use_treefunction tree = make_tree(features, targets, inc_node, discrete_dim, maxNbin, base)3 / 6.%Build a tree recursivelyNi, L= size(features);Uc= unique(targets);tree.dim= 0;%tree.child(1
10、:maxNbin) = zeros(1,maxNbin);tree.split_loc= inf;ifisempty(features),breakend%When to stop: If the dimension is one or the number of examples is smallif(inc_node> L)|(L= 1)|(length(Uc)= 1),H= hist(targets, length(Uc);m, largest= max(H);tree.child= Uc(largest);breakend%Compute the node's Ifori
11、 = 1:length(Uc),Pnode(i)= length(find(targets= Uc(i)/L;endInode = -sum(Pnode.*log(Pnode)/log(2);%For each dimension,computethegainratioimpurity%Thisisdone separatelyfordiscreteand continuousfeaturesdelta_Ib= zeros(1, Ni);split_loc= ones(1, Ni)*inf;fori = 1:Ni,data = features(i,:);Nbins= length(uniqu
12、e(data);if(discrete_dim(i),%This is a discrete feature4 / 6.P= zeros(length(Uc), Nbins);forj = 1:length(Uc),fork = 1:Nbins,indices= find(targets = Uc(j) &(features(i,:) = k);P(j,k) = length(indices);endendPk= sum(P);P= P/L;Pk= Pk/sum(Pk);info= sum(-P.*log(eps+P)/log(2);delta_Ib(i) =(Inode-sum(Pk
13、.*info)/-sum(Pk.*log(eps+Pk)/log(2);else%This is a continuous featureP = zeros(length(Uc), 2);%Sort the featuressorted_data, indices = sort(data);sorted_targets = targets(indices);%Calculate theinformationfor eachpossiblesplitI = zeros(1, L-1);forj = 1:L-1,fork =1:length(Uc),P(k,1)= length(find(sort
14、ed_targets(1:j)= Uc(k); P(k,2) =length(find(sorted_targets(j+1:end) = Uc(k); endPs= sum(P)/L;P= P/L;info= sum(-P.*log(eps+P)/log(2);I(j)= Inode - sum(info.*Ps);end5 / 6.delta_Ib(i), s = max(I);split_loc(i) = sorted_data(s);endend%Find the dimension minimizing delta_Ibm, dim = max(delta_Ib);dims= 1:N
15、i;tree.dim = dim;%Split along the 'dim' dimensionNf= unique(features(dim,:);Nbins= length(Nf);if(discrete_dim(dim),%Discrete featurefori = 1:Nbins,indices= find(features(dim, :) =Nf(i);tree.child(i) = make_tree(features(dims, indices), targets(indices), inc_node, discrete_dim(dims), maxNbin, base);endelse%Continuous featuretree.split_loc= split_loc(dim);indices1= find(features(dim,:) <=split_loc(dim);indices2= find(features(dim,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 意大利正规租房合同
- 矩阵与矩阵合同
- 挖机学员合同
- 煤泥签订合同
- 家庭光伏安装合同
- 酒店劳务合同
- 员工奖金合同
- 工作没签劳动合同
- 央六购片合同
- 租房正式合同
- 2025年湖北省中考物理试题(含答案及解析)
- QGDW10584-2022架空输电线路螺旋锚基础设计规范
- 统计学练习题-带答案
- 天车工高级考试题库及答案
- T/GZWEA A04-2019贵州省水利建设项目施工安全工作导则
- 客户微整形协议书
- 流行精粹 课件-2024-2025学年高中音乐人音版(2019)必修音乐鉴赏
- 男护士职业发展现状与未来路径
- 预防老年人常见病
- 间歇性导尿护理
- 统编版(2024)七年级上册道德与法治《探究与分享+运用你的经验+单元思考与行动》 参考答案
评论
0/150
提交评论