




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、闭区间上二次函数的最值问题一. 定二次函数在定区间上的最值二次函数是给定的,给出的定义域区间也是固定的,我们称这种情况是“定二次函数在定区间上的最值”。例1. 函数在区间0,3上的最大值是_,最小值是_。解:函数是定义在区间0,3上的二次函数,其对称轴方程是,顶点坐标为(2,2),且其图象开口向下,显然其顶点横坐标在0,3上,如图1所示。函数的最大值为,最小值为。图1例2. 已知,求函数的最值。解:由已知,可得,即函数是定义在区间上的二次函数。将二次函数配方得,其对称轴方程,顶点坐标,且图象开口向上。显然其顶点横坐标不在区间内,如图2所示。函数的最小值为,最大值为。图2解后反思:已知二次函数(
2、不妨设),它的图象是顶点为、对称轴为、开口向上的抛物线。由数形结合可得在m,n上的最大值或最小值:(1)当时,的最小值是的最大值是中的较大者。(2)当时若,由在上是增函数则的最小值是,最大值是若,由在上是减函数则的最大值是,最小值是二. 动二次函数在定区间上的最值二次函数随着参数a的变化而变化,即其图象是运动的,但定义域区间是固定的,我们称这种情况是“动二次函数在定区间上的最值”。例3. 已知,且,求函数的最值。解:由已知有,于是函数是定义在区间上的二次函数,将配方得:二次函数的对称轴方程是顶点坐标为,图象开口向上由可得,显然其顶点横坐标在区间的左侧或左端点上。函数的最小值是,最大值是。图3例
3、4. 已知二次函数在区间上的最大值为5,求实数a的值。解:将二次函数配方得,其对称轴方程为,顶点坐标为,图象开口方向由a决定。很明显,其顶点横坐标在区间上。若,函数图象开口向下,如图4所示,当时,函数取得最大值5即解得故图4若时,函数图象开口向上,如图5所示,当时,函数取得最大值5即解得故图5综上讨论,函数在区间上取得最大值5时,解后反思:例3中,二次函数的对称轴是随参数a变化的,但图象开口方向是固定的;例4中,二次函数的对称轴是固定的,但图象开口方向是随参数a变化的。三. 定二次函数在动区间上的最值二次函数是确定的,但它的定义域区间是随参数t而变化的,我们称这种情况是“定函数在动区间上的最值
4、”。例5. 如果函数定义在区间上,求的最小值。解:函数,其对称轴方程为,顶点坐标为(1,1),图象开口向上。如图6所示,若顶点横坐标在区间左侧时,有。当时,函数取得最小值。图6如图7所示,若顶点横坐标在区间上时,有,即。当时,函数取得最小值:。图7如图8所示,若顶点横坐标在区间右侧时,有,即。当时,函数取得最小值综上讨论,图8例6. 设函数的定义域为,对任意,求函数的最小值的解析式。解:将二次函数配方得:其对称轴方程为,顶点坐标为,图象开口向上若顶点横坐标在区间左侧,则,即。当时,函数取得最小值:若顶点横坐标在区间上,则,即。当时,函数取得最小值:若顶点横坐标在区间右侧,则,即。当时,函数取得
5、最小值:综上讨论,得四. 动二次函数在动区间上的最值二次函数是含参数的函数,而定义域区间也是变化的,我们称这种情况是“动二次函数在动区间上的最值”。例7. 已知,且当时,的最小值为4,求参数a的值。解:将代入S中,得则S是x的二次函数,其定义域为,对称轴方程为,顶点坐标为,图象开口向上。若,即,则当时,此时,或若,即,则当时,此时,或(因舍去)综上讨论,参变数a的取值为,或,或例8. 已知,且当时,的最小值为1,求参变数a的值。解:将代入P中,得则P是x的二次函数,其定义域为,对称轴方程为,顶点坐标为,图象开口向上。若,即则当时,此时,若,即,则当时,此时,或(因舍去)综上讨论,解后反思:例7中,二次函数的对称轴是变化的;例8中,二次函数的对称轴是固定的。另外,若函数图象的开口方向、对称轴均不
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030年中国乳酸行业投资价值研究报告
- 2025年中国朝天辣椒粉市场调查研究报告
- 2025年中国数码仪表市场调查研究报告
- 襄阳科技职业学院《信息可视化》2023-2024学年第二学期期末试卷
- 肇庆市实验中学高中生物:伴性遗传第课时的集体备课教案模版
- 2025至2031年中国继电耦合型接线端子排行业投资前景及策略咨询研究报告
- 新疆体育职业技术学院《汽车专业英语》2023-2024学年第二学期期末试卷
- 2025-2030年中国ORC发电行业发展深度测评及投资可行性预测研究报告
- 新疆医科大学《英语视听二》2023-2024学年第二学期期末试卷
- 信阳艺术职业学院《职业定位发展》2023-2024学年第一学期期末试卷
- 交互式影像中叙事与视觉表达的融合及其观众体验研究
- 广东省茂名市2025届高三二模考试地理试题(含答案)
- 2025年上半年福建福州市金融控股集团限公司招聘22人易考易错模拟试题(共500题)试卷后附参考答案
- 胰岛素皮下注射团体标准
- 拉萨市“一考三评”学习考试题库
- 7.1 我国法治建设的历程课件高中政治统编版必修三政治与法治
- 天然气推广活动方案
- 2025年1月浙江省高考物理试卷(含答案)
- 2025年厂家返点协议书模板
- 应急救援技能培训
- 2025年广东省深圳市中考一模联考英语试题(原卷版+解析版)
评论
0/150
提交评论