




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、目录一、设计任务及要求1二、语音识别的简单介绍2.1 语者识别的概念22.2 特征参数的提取32.3 用矢量量化聚类法生成码本32.4 VQ的说话人识别4三、算法程序分析3.1 函数关系.43.2 代码说明53.2.1 函数mfcc53.2.2 函数disteu53.2.3 函数vqlbg.63.2.4 函数test63.2.5 函数testDB73.2.6 函数train83.2.7 函数melfb8四、演示分析.9五、心得体会.11附:GUI程序代码12设计任务及要求用MATLAB实现简单的语音识别功能;具体设计要求如下:用MATLAB实现简单的数字19的语音识别功能二、语音识别的简单介绍
2、基于VQ的说话人识别系统,矢量量化起着双重作用.在练习阶段,把每一个说话者所提取的特征参数进行分类,产生不同码字所组成的码本.在识别匹配阶段,我们用VQ方法计算平均失真测度本系统在计算距离d时,采用欧氏距离测度,从而判断说话人是谁.语音识别系统结构框图如图1所示.语苜一数据融国预皿重、加:又明窗训统VQ模型练习特征参数识别I识别IfVQ码本匹配U尊码本库;,说话人:的码本:说话人3的吗本说话人W的码本图1语音识别系统结构框图2.1 语者识别的概念语者识别就是根据说话人的语音信号来判别说话人的身份.语音是人的自然属性之一,由于说话人发音器官的生理差异以及后天形成的行为差异,每个人的语音都带有强烈
3、的个人色彩,这就使得通过分析语音信号来识别说话人成为可能.用语音来鉴别说话人的身份有着许多独特的优点,如语音是人的固有的特征,不会丧失或遗忘;语音信号的采集方便,系统设备本钱低;利用网络还可实现远程客户效劳等.因此,近几年来,说话人识别越来越多的受到人们的重视.与其他生物识别技术如指纹识别、手形识别等相比拟,说话人识别不仅使用方便,而且属于非接触性,容易被用户接受,并且在已有的各种生物特征识别技术中,是唯一可以用作远程验证的识别技术.因此,说话人识别的应用前景非常广泛:今天,说话人识别技术已经关系到多学科的研究领域,不同领域中的进步都对说话人识别的开展做出了奉献.说话人识别技术是集声学、语言学
4、、计算机、信息处理和人工智能等诸多领域的一项综合技术,应用需求将十分广阔.在吃力语音信号的时候如何提取信号中关键的成分尤为重要.语音信号的特征参数的好坏直接导致了区分的准确性.2.2 特征参数的提取对于特征参数的选取,我们使用mfcc的方法来提取.MFC俸数是基于人的听觉特性利用人听觉的屏蔽效应,在Mel标度频率域提取出来的倒谱特征参数.MFC惨数的提取过程如下:1 .对输入的语音信号进行分帧、加窗,然后作离散傅立叶变换,获得频谱分布信息.设语音信号的DFT为:N1j2nkXa(k)=Zx(n)e_N-,0<k<N-1(1)n1其中式中x(n)为输入的语音信号,N表示傅立叶变换的点
5、数.2 .再求频谱幅度的平方,得到能量谱.3 .将能量谱通过一组Mel尺度的三角形滤波器组.我们定义一个有M个滤波器的滤波器组(滤波器的个数和临界带的个数相近),采用的滤波器为三角滤波器,中央频率为f(m),m=1,2,3,M本系统取M=1004 .计算每个滤波器组输出的对数能量.N1S(m)=ln|Xa(k)12Hm(k),k=12/0-m-M-1其中Hm(k)为三角滤波器的频率响应.5 .经过离散弦变换(DCT得到MFCC数.M1C(n)='S(m)cos(二n(m-0.5/m),(3)m=00<n<N-1MFCCS数个数通常取2030,常常不用0阶倒谱系数,由于它反映
6、的是频谱能量,故在一般识别系统中,将称为能量系数,并不作为倒谱系数,本系统选取20阶倒谱系数.2.3 用矢量量化聚类法生成码本我们将每个待识的说话人看作是一个信源,用一个码本来表征.码本是从该说话人的练习序列中提取的MFC破征矢量聚类而生成.只要练习的序列足够长,可认为这个码本有效地包含了说话人的个人特征,而与讲话的内容无关.本系统采用基于分裂的LBG的算法设计VQ码本,Xkk=1,2,K为练习序列,B为码本.具体实现过程如下:1 .取提取出来的所有帧的特征矢量的型心均值作为第一个码字矢量B1.2 .将当前的码本Bm艮据以下规那么分裂,形成2m码字.*=%+0Bm=Bm1-;其中m从1变化到当
7、前的码本的码字数,&是分裂时的参数,本文8=0.01.3 .根据得到的码本把所有的练习序列特征矢量进行分类,然后根据下面两个公式计算练习矢量量化失真量的总和Dn以及相对失真n为迭代次数,初始n=0,D,=8,B为当前的码书,假设相对失真小于某一阈值&,迭代结束,当前的码书就是设计好的2m码字的码书,转5.否那么,转下一步量化失真量和:KD=2mindXk,B5k1相对失真:(6)D(nJ1)-Dn1Dn4.重新计算各个区域的新型心,得到新的码书,转3.5.重复2,3和4步,直到形成有M个码字的码书M是所要求的码字数,其中D0=100002.4VQ的说话人识别设是未知的说话人的特
8、征矢量Xi,IH,Xt,共有T帧是练习阶段形成的码书,表示码书第m个码字,每一个码书有M个码字.再计算测试者的平均量化失真D,并设置一个阈值,假设D小于此阈值,那么是原练习者,反之那么认为不是原练习者.D=1/TmindxjBmj11mlM三、算法程序分析在具体的实现过程当中,采用了matlab软件来帮助完成这个工程.在matlab中主要由采集,分析,特征提取,比对几个重要局部.以下为在实际的操作中,具体用到得函数关系和作用一一列举在下面.3.1 函数关系主要有两类函数文件Train.m和Test.m在Train.m调用Vqlbg.m获取练习录音的vq码本,而Vqlbg.m调用mfcc.m获取
9、单个录音的mel倒谱系数,接着mfcc.m调用Melfb.m-将能量谱通过一组Mel尺度的三角形滤波器组.在Test.m函数文件中调用Disteu.m计算练习录音提供vq码本与测试录音提供mfccmel倒谱系数的距离,即判断两声音是否为同一录音者提供.Disteu.m调用mfcc.m获取单个录音的mel倒谱系数.mfcc.m调用Melfb.m-将能量谱通过一组Mel尺度的三角形滤波器组.3.2 具体代码说明3.2.1 函数mffc:functionr=mfccs,fsm=100;n=256;1 =length(s);nbFrame=floor(l-n)/m)+1;%沿-00方向取整fori=1
10、:nforj=1:nbFrameM(i,j)=s(j-1)*m)+i);%对矩阵M赋值endendh=hamming(n);%力口hamming窗,以增加音框左端和右端的连续性M2=diag(h)*M;fori=1:nbFrameframe(:,i)=fft(M2(:,i);%对信号进行快速傅里叶变换FFTendt=n/2;tmax=l/fs;m=melfb(20,n,fs);%等上述线性频谱通过Mel频率滤波器组得到Mel频谱,下面在将其转化成对数频谱n2=1+floor(n/2);z=m*abs(frame(1:n2,:).A2;r=dct(log(z);%将上述对数频谱,经过离散余弦变换
11、(DCT)变换到倒谱域,即可得到Mel倒谱系数(MFCC#数)3.2.2 函数disteu-计算测试者和模板码本的距离functiond=disteu(x,y)M,N=size(x);%M2,P=size(y);%if(M=M2)error('不匹配!音频x赋值给【MN1音频y赋值给【M2P】'%两个音频时间长度不相等endd=zeros(N,P);if(N<P)%在两个音频时间长度相等的前提下copies=zeros(1,P);forn=1:Nd(n,:)=sum(x(:,n+copies)-y).A2,1);endelsecopies=zeros(1,N);forp=
12、1:Pd(:,p)=sum(x-y(:,p+copies).八2,1)'end%成对欧氏距离向两个矩阵的列之间的距离endd=d.A0.5;3.2.3 函数vqlbg-该函数利用矢量量化提取了音频的vq码本functionr=vqlbg(d,k)e=.01;r=mean(d,2);dpr=10000;fori=1:log2(k)r=r*(1+e),r*(1-e);while(1=1)z=disteu(d,r);m,ind=min(z,2);t=0;forj=1:2Air(:,j)=mean(d(:,find(ind=j),2);x=disteu(d(:,find(ind=j),r(:,
13、j);forq=1:length(x)t=t+x(q);endendif(dpr-t)/t)<e)break;elsedpr=t;endendend3.2.4 函数testfunctionfinalmsg=test(testdir,n,code)fork=1:n%readtestsoundfileofeachspeakerv=mfcc(s,fs);%distmin=4;%d=disteu(v,code1);%“距离file=sprintf('%ss%d.wav',testdir,k);s,fs=wavread(file);得到测试人语音的mel倒谱系数阈值设置处就判断一次
14、,由于模板里面只有一个文件计算得到模板和要判断的声音之间的变换得到一个距离的量dist=sum(min(d,2)/size(d,1);%测试阈值数量级msgc=sprintf('与模板语音信号的差值为:10f',dist);disp(msgc);%此人匹配ifdist<=distmin%一个阈值,小于阈值,那么就是这个人.msg=sprintf('第%d位说话者与模板语音信号匹配,符合要求!n',k);finalmsg=此位说话者符合要求!'%界面显示语句,可随意设定disp(msg);end%此人不匹配ifdist>distminmsg=s
15、printf('第位说话者与模板语音信号不匹配,不符合要求!n',k);finalmsg=此位说话者不符合要求!'%界面显示语句,可随意设定disp(msg);endend3.2.5 函数testDB这个函数实际上是对数据库一个查询,根据测试者的声音,找相应的文件,并且给出是谁的提示functiontestmsg=testDB(testdir,n,code)nameList='1','2','3','4','5','6','7','8',
16、9;9'%这个是我们要识别的9个数fork=1:n%数据库中每一个说话人的特征file=sprintf('%ss%d.wav',testdir,k);哦出文件的路径s,fs=wavread(file);v=mfcc(s,fs);对找到的文件取mfcc变换distmin=inf;k1=0;forl=1:length(code)d=disteu(v,codel);dist=sum(min(d,2)/size(d,1);ifdist<distmindistmin=dist;%这里和test函数里面一样但多了一个具体语者的识别k1=l;endendmsg=nameList
17、k1msgbox(msg);end3.2.6 函数train一该函数就是对音频进行练习,也就是提取特征参数functioncode=train(traindir,n)k=16;%numberofcentroidsrequiredfori=1:n%对数据库中的代码形成码本file=sprintf('%ss%d.wav',traindir,i);disp(file);s,fs=wavread(file);v=mfcc(s,fs);%计算MFCC's提取特征特征,返回值是Mel倒谱系数,是一个log的dct得到的codei=vqlbg(v,k);%练习VQ码本通过矢量量化,得
18、到原说话人的VQ码本end3.2.7 函数melfb-确定矩阵的滤波器functionm=melfb(p,n,fs)f0=700/fs;fn2=floor(n/2);lr=log(1+0.5/f0)/(p+1);%converttofftbinnumberswith0forDCtermbl=n*(f0*(exp(01pp+1*lr)-1);直接转换为FFT的数字模型b1=floor(bl(1)+1;b2=ceil(bl(2);b3=floor(bl(3);b4=min(fn2,ceil(bl(4)-1;pf=log(1+(b1:b4)/n/f0)/Ir;fp=floor(pf);pm=pf-f
19、p;r=fp(b2:b4)1+fp(1:b3);c=b2:b41:b3+1;v=2*1-pm(b2:b4)pm(1:b3);m=sparse(r,c,v,p,1+fn2)4、 演示分析我们的功能分为两局部:对已经保存的9个数字的语音进行区分和实时的判断说话人说的是否为一个数.在前者的实验过程中,先把9个数字的声音保存成wav的格式,放在一个文件夹中,作为一个检测的数据库.然后对检测者实行识别,系统给出提示是哪个数字.在第二个功能中,实时的录取一段说话人的声音作为模板,提取mfcc特征参数,随后紧接着进行遇着识别,也就是让其他人再说相同的话,看是否是原说话者.实验过程及具体功能如下:先翻开Mat
20、lab使CurrentDirectory为录音及程序所所在的文件夹再翻开文件“enter.m",点run运行,翻开enter界面,点击“进入按钮进入系统.注:文件包未封装完毕,目前只能通过此方式翻开运行.如下图figure1genterI口Ifigurel在对数据库中已有的语者进行识别模块对数据库中已有的语者进行识别语音库录制模板选择载人语音库语音个数,录音-test语者判定选择载入语音库语音个数;点击语音库录制模版进行已存语音信息的提取;点击录首-test进行现场录首;点击语者判断进行判断数字,并显示出来在实时语者识别模块点击实时录制模板上的“录音-train按钮,是把新语者的声音
21、以wav格式存放在“实时模板文件夹中,接着点击“实时录制模板,把新的模板提取特征值.随后点击实时语者识别模板上的“录音-train按钮,是把语者的声音以wav格式存放在“测试文件夹中,再点击“实时语者识别,在对测得的声音提取特征值的同时,和实时模板进行比对,然后得出是否是实时模板中的语者.另外面板上的播放按钮都是播放相对应左边录取的声音.想要测量屡次,只要接着录音,自动保存,然后程序比对音频就可以.退出只要点击菜单File/Exit,退出程序.程序运行截图:(fig.2)运行后系统界面5、 心得体会实验说明,该系统能较好地进行语音的识别,同时,基于矢量量化技术VQ的语音识别系统具有分类准确,存
22、储数据少,实时响应速度快等综合性能好的特点.矢量量化技术在语音识别的应用方面,尤其是在孤立词语音识别系统中得到很好的应用,特别是有限状态矢量量化技术,对于语音识别更为有效.通过这次课程设计,我对语音识别有了更加形象化的熟悉,也强化了MATLAB的应用,对将来的学习奠定了根底.附:GUI程序代码%UNTITLED2M-fileforuntitled2,fig%UNTITLED2,byitself,createsanewUNTITLED2orraisestheexisting%singleton*.%H=UNTITLED2returnsthehandletoanewUNTITLED2ortheha
23、ndleto%theexistingsingleton*.%UNTITLED2('CALLBACK',hObject,eventData,handles,.)callsthelocal%functionnamedCALLBACKinUNTITLED2.Mwiththegiveninputarguments.%UNTITLED2('Property','Value',.)createsanewUNTITLED2orraisesthe%existingsingleton*.Startingfromtheleft,propertyvaluepairsa
24、re%appliedtotheGUIbeforeuntitled2_OpeningFunctiongetscalled.An%unrecognizedpropertynameorinvalidvaluemakespropertyapplication%stop.Allinputsarepassedtountitled2_OpeningFcnviavarargin.%*SeeGUIOptionsonGUIDE'sToolsmenu.Choose"GUIallowsonlyone%instancetorun(singleton)".%Seealso:GUIDE,GUID
25、ATA,GUIHANDLES%Copyright2002-2003TheMathWorks,Inc.%Edittheabovetexttomodifytheresponsetohelpuntitled2%LastModifiedbyGUIDEv2.508-Jun-202123:58:57%Begininitializationcode-DONOTEDITgui_Singleton=1;gui_State=struct('gui_Name',mfilename,.'gui_Singleton',gui_Singleton,'gui_OpeningFcn
26、39;,untitled2_OpeningFcn,'gui_OutputFcn',untitled2_OutputFcn,'gui_LayoutFcn',口,.'gui_Callback',);ifnargin&&ischar(varargin1)endifnargoutvarargout1:nargout=gui_mainfcn(gui_State,varargin:);elsegui_mainfcn(gui_State,varargin:);end%Endinitializationcode-DONOTEDIT%Execute
27、sjustbeforeuntitled2ismadevisible.functionuntitled2_OpeningFcn(hObject,eventdata,handles,varargin)%Thisfunctionhasnooutputargs,seeOutputFcn.%hObjecthandletofigure%eventdatareserved-tobedefinedinafutureversionofMATLAB%handlesstructurewithhandlesanduserdata(seeGUIDATA)%varargincommandlineargumentstoun
28、titled2(seeVARARGIN)%Choosedefaultcommandlineoutputforuntitled2handles.output=hObject;%Updatehandlesstructureguidata(hObject,handles);axes(findobj(imshow('3.jpgaxes(findobj(imshow('1.jpgtag','axes13'););tag','axes12'););%UIWAITmakesuntitled2waitforuserresponse(seeUIRE
29、SUME)%uiwait(handles.figure1);%-Outputsfromthisfunctionarereturnedtothecommandline.functionvarargout=untitled2_OutputFcn(hObject,eventdata,handles)%varargoutcellarrayforreturningoutputargs(seeVARARGOUT);%hObjecthandletofigure%eventdatareserved-tobedefinedinafutureversionofMATLAB%handlesstructurewith
30、handlesanduserdata(seeGUIDATA)%Getdefaultcommandlineoutputfromhandlesstructurevarargout1=handles.output;%-Executesonbuttonpressinpushbutton1.functionpushbutton1_Callback(hObject,eventdata,handles)%hObjecthandletopushbutton1(seeGCBO)%eventdatareserved-tobedefinedinafutureversionofMATLAB%handlesstruct
31、urewithhandlesanduserdata(seeGUIDATA)Channel_Str=get(handles.popupmenu3,'String');Channel_Number=str2double(Channel_Strget(handles.popupmenu3,'Value');globalmoodle;moodle=train('模版',Channel_Number)%?y?oo?6?DDi&e?土?%-Executesonbuttonpressinpushbutton2.functionpushbutton2_C
32、allback(hObject,eventdata,handles)%hObjecthandletopushbutton2(seeGCBO)%eventdatareserved-tobedefinedinafutureversionofMATLAB%handglobaldata1;globalmoodle;test('测试',1,moodle)%6a6±6?o?i2a%functionOpen_Callback(hObject,eventdata,handles)%hObjecthandletoOpen(seeGCBO)%eventdatareserved-tobed
33、efinedinafutureversionofMATLAB%handlesstructurewithhandlesanduserdata(seeGUIDATA)filename,pathname=uigetfile('')file=get(handles.edits,filename,pathname)y,f,b=wavread(file);%functionExit_Callback(hObject,eventdata,handles)%hObjecthandletoExit(seeGCBO)%eventdatareserved-tobedefinedinafutureve
34、rsionofMATLAB%handlesstructurewithhandlesanduserdata(seeGUIDATA)exit%functionAbout_Callback(hObject,eventdata,handles)%hObjecthandletoAbout(seeGCBO)%eventdatareserved-tobedefinedinafutureversionofMATLAB%handlesstructurewithhandlesanduserdata(seeGUIDATA)H='语者识别helpdlg(H,'helptext')%functi
35、onFile_Callback(hObject,eventdata,handles)%hObjecthandletoFile(seeGCBO)%eventdatareserved-tobedefinedinafutureversionofMATLAB%handlesstructurewithhandlesanduserdata(seeGUIDATA)%functionEdit_Callback(hObject,eventdata,handles)%hObjecthandletoEdit(seeGCBO)%eventdatareserved-tobedefinedinafutureversion
36、ofMATLAB%handlesstructurewithhandlesanduserdata(seeGUIDATA)%functionHelp_Callback(hObject,eventdata,handles)%hObjecthandletoHelp(seeGCBO)%eventdatareserved-tobedefinedinafutureversionofMATLAB%handlesstructurewithhandlesanduserdata(seeGUIDATA)%-Executesonbuttonpressinpushbutton7.functionpushbutton7_C
37、allback(hObject,eventdata,handles)%hObjecthandletopushbutton7(seeGCBO)%eventdatareserved-tobedefinedinafutureversionofMATLAB%handlesstructurewithhandlesanduserdata(seeGUIDATA)msg='请速度录音?msgbox(msg)clearglobaldata1;%globaldataDN1;AI=analoginput('winsound');chan=addchannel(AI,1:2);duration
38、=3;%1secondacquisitionset(AI,'SampleRate',8000)ActualRate=get(AI,'SampleRate');set(AI,'SamplesPerTrigger',duration*ActualRate)set(AI,'TriggerType','Manual')blocksize=get(AI,'SamplesPerTrigger');Fs=ActualRate;start(AI)trigger(AI)data1,time,abstime,event
39、s=getdata(AI);fname=sprintf('E:Matlab语音识别系统实时模版s1.wav')%dataDN1=wden(data1,'heursure','s','one',5,'sym8');denoisewavwrite(data1,fname)msgbox(fname)%-Executesonbuttonpressinpushbutton8.functionpushbutton8_Callback(hObject,eventdata,handles)%hObjecthandletopushb
40、utton8(seeGCBO)%eventdatareserved-tobedefinedinafutureversionofMATLAB%handlesstructurewithhandlesanduserdata(seeGUIDATA)globaldata1;%globaldataDN1;sound(data1)%sound(dataDN1)axes(handles.axes1)%settoplotataxes1plot(data1);%plot(dataDN1);xlabel('练习采样序列),ylabel('信号幅);%xlabel('?心a-2e?uDoDD&
41、#39;),ylabel('sym8D?2一?心?06a?D?o?u');gridon;clear%-Executesonbuttonpressinpushbutton9.functionpushbutton9_Callback(hObject,eventdata,handles)%hObjecthandletopushbutton9(seeGCBO)%eventdatareserved-tobedefinedinafutureversionofMATLAB%handlesstructurewithhandlesanduserdata(seeGUIDATA)msg='请
42、速度录音?msgbox(msg)clearglobaldata2;%globaldataDN2;AI=analoginput('winsound');chan=addchannel(AI,1:2);duration=3;%1secondacquisitionset(AI,'SampleRate',8000)ActualRate=get(AI,'SampleRate');set(AI,'SamplesPerTrigger',duration*ActualRate)set(AI,'TriggerType','M
43、anual')blocksize=get(AI,'SamplesPerTrigger');Fs=ActualRate;start(AI)trigger(AI)data2,time,abstime,events=getdata(AI);fname=sprintf('E:Matlab语音识别系统测试s1.wav')%dataDN1=wden(data1,'heursure','s','one',5,'sym8');denoisewavwrite(data2,fname)msgbox(fname)
44、%-Executesonbuttonpressinpushbutton10.functionpushbutton10_Callback(hObject,eventdata,handles)%hObjecthandletopushbutton10(seeGCBO)%eventdatareserved-tobedefinedinafutureversionofMATLAB%handlesstructurewithhandlesanduserdata(seeGUIDATA)globaldata2;%globaldataDN2;sound(data2)%sound(dataDN2)axes(handl
45、es.axes2)%settoplotataxes1plot(data2);%plot(dataDN2);xlabel('测试采样序列),ylabel('信号幅);%xlabel('2ae?2e?uDoDD'),ylabel('sym8D?2一?心?o6心?D?o?u');%gridon;clear%-Executesonbuttonpressinpushbutton11.functionpushbutton11_Callback(hObject,eventdata,handles)%hObjecthandletopushbutton11(see
46、GCBO)%eventdatareserved-tobedefinedinafutureversionofMATLAB%handlesstructurewithhandlesanduserdata(seeGUIDATA)globalmoodle;testDB('测试',1,moodle)%-Executesonbuttonpressinpushbutton12.functionpushbutton12_Callback(hObject,eventdata,handles)%hObjecthandletopushbutton12(seeGCBO)%eventdatareserve
47、d-tobedefinedinafutureversionofMATLAB%handlesstructurewithhandlesanduserdata(seeGUIDATA)globalmoodle;moodle=train('实时模板',1)%-Executesonselectionchangeinpopupmenu3.functionpopupmenu3_Callback(hObject,eventdata,handles)%hObjecthandletopopupmenu3(seeGCBO)%eventdatareserved-tobedefinedinafutureversionofMATLAB%handlesstructurewithhandlesanduserdata(seeGUIDATA)%Hints:contents=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 急诊科护理管理考试题库及答案
- 内民大护理招聘笔试题库及答案
- 大专学医考试题及答案
- 办公楼宇租赁合同细节
- 人才招聘协议承诺函(6篇)
- 企业内部培训记录与效果评估
- 教育机构教学质量评估表教学成果展示版
- 医疗安全教育培训评价课件
- 《中国古代诗词赏析高一课程教案》
- 《中国的传统建筑与文化:大学建筑学教学教案》
- 幼儿园膳食委员会含内容两篇
- 人教版六年级英语上册《全册》完整版
- 2023人教版九年级语文上册 第一单元主题阅读 课件
- 媒介素养概论 课件 刘勇 第0-4章 绪论、媒介素养-新闻评论
- 美慧树课件教材培训
- 2023年北京市中考物理试卷(解析版)
- 幼儿园学生近视防控工作领导小组及岗位职责
- 沙盘游戏在自闭症中的运用课件
- 青稞栽培管理培训课件
- 桥梁施工过程中的安全检查要点
- 化学纤维制造中的聚丙烯酸酯纺丝技术
评论
0/150
提交评论