三角函数的诱导公式教学设计说课稿教案_第1页
三角函数的诱导公式教学设计说课稿教案_第2页
三角函数的诱导公式教学设计说课稿教案_第3页
三角函数的诱导公式教学设计说课稿教案_第4页
三角函数的诱导公式教学设计说课稿教案_第5页
免费预览已结束,剩余5页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、三角函数的诱导公式整体设计教学分析本节主要是推导诱导公式二、三、四,并利用它们解决一些求解、化简、证实问题.本小节介绍的五组诱导公式在内容上既是公式一的延续,又是后继学习内容的根底,它们与公式一组成的六组诱导公式,用于解决求任意角的三角函数值的问题以及有关三角函数的化简、证实等问题.在诱导公式的学习中,化归思想贯穿始末,这一典型的数学思想,无论在本节中的分析导入,还是利用诱导公式将求任意角的三角函数值转化为求锐角的三角函数值,均清楚地得到表达,在教学中注意数学思想渗透于知识的传授之中,让学生了解化归思想,形成初步的化归意识,特别是在本课时的三个转化问题引入后,为什么确定180°+口角

2、为第一研究对象,-a角为第二研究对象,正是化归思想的运用.公式二、公式三与公式四中涉及的角在本课的分析导入时为不大于90.的非负角,但是在推导中却把a拓广为任意角,这一思维上的转折使学生难以理解,甚至会导致对其必要性的疑心,因此它成为本课时的难点所在.课本例题实际上是诱导公式的综合运用,难点在于需要把所求的角看成是一个整体的任意角.学生第一次接触到此题型,思维上有困难,要多加引导分析,另外,诱导公式中角度制亦可转化为弧度制,但必须注意同一个公式中只能采取一种制度,因此要增强角度制与弧度制的转化的练习.三维目标1 .通过学生的探究,明了三角函数的诱导公式的来龙去脉,理解诱导公式的推导过程;培养学

3、生的逻辑推理水平及运算水平,渗透转化及分类讨论的思想.2 .通过诱导公式的具体运用,熟练正确地运用公式解决一些三角函数的求值、化简和证明问题,体会数式变形在数学中的作用.3 .进一步领悟把未知问题化归为问题的数学思想,通过一题多解,一题多变,多题归一,提升分析问题和解决问题的水平.重点难点教学重点:五个诱导公式的推导和六组诱导公式的灵活运用,三角函数式的求值、化简和证实等.教学难点:六组诱导公式的灵活运用.课时安排2课时教学过程第1课时导入新课思路1.利用单位圆表示任意角的正弦值和余弦值.复习诱导公式一及其用途.思路2.在前面的学习中,我们知道终边相同的角的同名三角函数值相等,即公式一,并且利

4、用公式一可以把绝对值较大的角的三角函数转化为0°到360°0到2兀内的角的三角函数值,求锐角三角函数值,我们可以通过查表求得,对于90°至IJ360.金到2兀范围内的角的三角函数怎样求解,能不能有像公式一那样的公式把它们转化到锐角范围内来求解,这一节就来探讨这个问题.推进新课新知探究提出问题由公式一把任意角a转化为0°,360°)内的角后,如何进一步求出它的三角函数值?活动:在初中学习了锐角的三角函数值可以在直角三角形中求得,特殊角的三角函数值学生记住了,对非特殊锐角的三角函数值可以通过查数学用表或是用计算器求得.教师可组织学生思考讨论如下问题

5、:0°至IJ90°的角的正弦值、余弦值用何法可以求得?90°至IJ360°的角3能否与锐角“相联系?通过分析3与"的联系,引导学生得出解决设问的一种思路:假设能把求90°,360°)内的角3的三角函数值,转化为求有关锐角a的三角函数值,那么问题将得到解决,适时提出,这一思想就是数学的化归思想,教师可借此向学生介绍化归思想.讨论结果:通过分析,归纳彳#出:如图1.180a,90,180,3=180a,180,270,360a,270,360,提出问题锐角a的终边与180°+a角的终边位置关系如何?它们与单位圆的交点的

6、位置关系如何?任意角a与180°+a呢?活动:分a为锐角和任意角作图分析:如图2.引导学生充分利用单位圆,并和学生一起讨论探究角的关系.无论a为锐角还是任意角,180.+a的终边都是a的终边的反向延长线,所以先选择180°+a为研究对象.利用图形还可以直观地解决问题,角的终边与单位圆的交点的位置关系是关于原点对称的,对应点的坐标分别是P(x,y)和P'(-x,-y).指导学生利用单位圆及角的正弦、余弦函数的定义,导出公式二:sin180°+a=-sina,cos180°+a=-cosa.并指导学生写出角为弧度时的关系式:sin兀+a=-sina,

7、cos兀+a=-cosa,tan兀+a尸tana.引导学生观察公式的特点,明了各个公式的作用.讨论结果:锐角a的终边与180°+a角的终边互为反向延长线.它们与单位圆的交点关于原点对称.任意角a与180°+a角的终边与单位圆的交点关于原点对称提出问题有了以上公式,我们下一步的研究对象是什么?-a角的终边与角a的终边位置关系如何?活动:让学生在单位圆中讨论-a与a的位置关系,这时可通过复习正角和负角的定义,启发学生思考:任意角a和-a的终边的位置关系;它们与单位圆的交点的位置关系及其坐标.探索、概括、对照公式二的推导过程,由学生自己完成公式三的推导,即:sin(-a)=-si

8、na,cos(-a)=cosa,tan(-a)=-tana.教师点拨学生注意:无论a是锐角还是任意角,公式均成立.并进一步引导学生观察分析公式三的特点,得出公式三的用途:可将求负角的三角函数值转化为求正角的三角函数值.讨论结果:根据分析下一步的研究对象是-a的正弦和余弦.-a角的终边与角a的终边关于X轴对称,它们与单位圆的交点坐标的关系是横坐标相等纵坐标互为相反数.提出问题下一步的研究对象是什么?兀-a角的终边与角a的终边位置关系如何?活动:讨论兀-a与a的位置关系,这时可通过复习互补的定义,引导学生思考:任意角a和兀a的终边的位置关系;它们与单位圆的交点的位置关系及其坐标.探索、概括、对照公

9、式二、三的推导过程,由学生自己完成公式四的推导,即:sin(兀-a)=sina,cos(兀-a)=-cosa,tan(兀-a)=-tana.强调无论a是锐角还是任意角,公式均成立.引导学生观察分析公式三的特点,得出公式四的用途:可将求兀-a角的三角函数值转化为求角a的三角函数值.让学生分析总结诱导公式的结构特点,概括说明,增强记忆.我们可以用下面一段话来概括公式一一四:a+k,2Tt(kZ),-a,兀±a的三角函数值,等于a的同名函数值,前面加上一个把a看成锐角时原函数值的符号.进一步简记为:“函数名不变,符号看象限.点拨、引导学生注意公式中的a是任意角.讨论结果:根据分析下一步的研

10、究对象是兀-a的三角函数;兀-a角的终边与角a的终边关于y轴对称,它们与单位圆的交点坐标的关系是纵坐标相等,横坐标互为相反数.例如应用思路116);(4)cos(-20403).例1利用公式求以下三角函数值(1)cos225°(2)sin工;(3)sin(3活动:这是直接运用公式的题目类型,让学生熟悉公式,通过练习加深印象,逐步到达熟练、正确地应用.让学生观察题目中的角的范围,对照公式找出哪个公式适合解决这个问题解:(1)cos225°=cos(180°+45°)=-cos45°(2)sin11=sin(437t_3(3)sin(16)=-si

11、n316=-sin(5兀+一)=-(-sin(4)cos(-=cos120°=-cos60°2040°)=cos2040=cos(180°-60°)1=cos(6x360°-120°)2点评:利用公式一一四把任意角的三角函数转化为锐角的三角函数般可按以下步骤进行:州公K上述步骤表达了由未知转化为的转化与化归的思想方法变式练习利用公式求以下三角函数值:(1)cos(-510°15');(2)sin(解:(1)cos(-510°15')=cos51017兀).315'=cos(360=

12、cos150°=-cos29°+150°15')15'45'=cos(180°-29°=-0.8682;45')(2)sin(173兀)=sin(-3X2Tt)=sin3例22007全国高考,1cos330°等于A.12B.C.-3D.答案:C变式练习12sin290cos430化简:sin250cos790解.Ji2sin290cos430sin250cos790=112sin(36070)cos(3607c5sin(18070)cos(72070)_12sin70cos70|cos70sin70|s

13、in70cos70cos70sin70sin70cos70/=1.cos70sin70例3化简cos315°+sin(-30°)+sin225°+cos480°活动:这是要求学生灵活运用诱导公式进行变形、求值与证实的题目.利用诱导公式将有关角的三角函数化为锐角的三角函数,再求值、合并、约分解:cos315°+sin(-30°)+sin225°+cos480°=cos(360°-45°)-sin30°+sin(180°+45°)+cos(360°+120&#

14、176;)=cos(-45°)1-sin45°+cos120°21、2=cos45一一+cos(180-60)22、212=-cos60=-1.222点评:利用诱导公式化简,是进行角的转化,最终到达统一角或求值的目的变式练习求证:tan(2一)sin(2一)cos(6_)tan.(cos)sin(5)分析:利用诱导公式化简较繁的一边,使之等于另一边.证实:左边=史0画仪国6一)(cos)sin(5)tan()sin()cos()(cos)sin()_tansincoscossin=tan0=右边.所以原式成立规律总结:证实恒等式,一般是化繁为简,可以化简一边,也可

15、以两边都化简知能练习课本本节练习13.解答:1.(1)-cos;(2)-sin1;(3)-sin;(4)cos70°6'.95点评:利用诱导公式转化为锐角三角函数.2.(1)1;(2)1;(3)0.6428;(4),3.2 22点评:先利用诱导公式转化为锐角三角函数,再求值.3 .(1)-sin2ccosa;(2)sin4a.点评:先利用诱导公式变形为角a的三角函数,再进一步化简.课堂小结本节课我们学习了公式二、公式三、公式四三组公式,这三组公式在求三角函数值、化简三角函数式及证实三角恒等式时是经常用到的,为了记牢公式,我们总结了“函数名不变,符号看象限的简便记法,同学们要正

16、确理解这句话的含义,不过更重要的还是应用,我们要多加练习,切实掌握由未知向转化的化归思想作业课本习题1.3A组2、3、4.第2课时导入新课上一节课我们研究了诱导公式二、三、四.现在请同学们回忆一下相应的公式.提问多名学生上黑板默写公式.在此根底上,我们今天继续探究别的诱导公式,揭示课题.推进新课新知探究提出问题终边与角a的终边关于直线y=x对称的角有何数量关系?活动:我们借助单位圆探究终边与角a的终边关于直线y=x对称的角的数量关系.教师充分让学生探究,启发学生借助单位圆,点拨学生从终边关于直线y=x对称的两个角之间的数量关系,关于直线y=x对称的两个点的坐标之间的关系进行引导.图3讨论结果:

17、如图3,设任意角的终边与单位圆的交点Pi的坐标为(x,y),由于角-a的终边与角a的终边关于直线y=x对称,角万-a的终边与单位圆的交点P2与点Pi关于直线y=x对称,因此点P2的坐标是(y,x),于是,我们有sina=y,cosa=x,cos(-a)=y,sin(-a)=x.从而得到公式五cos(-a)=sina,sin(一-a)=cosa.提出问题能否用已有公式得出_+a的正弦、余弦与a的正弦、余弦之间的关系式?2活动:教师点拨学生将一+a转化为兀-a,从而利用公式四和公式五到达我们的目的.由于万+a可以转化为兀-a,所以求y+a角的正余弦问题就转化为利用公式四接着转化为利用公式五,这时可

18、以让学生独立推导公式六.讨论结果:公式六Sin一+a=cosa,cos一+a=-sina提出问题你能概括一下公式五、六吗?活动:结合上一堂课研究公式一一四的共同特征引导学生寻求公式五、六的共同特征,指导学生用类比的方法即可将公式五和公式六进行概括讨论结果:一土a的正弦余弦函数值,分别等于a的余弦正弦函数值,前面加上一个把2a看成锐角时原函数值的符号.进一步可以简记为:函数名改变,符号看象限.利用公式五或公式六,可以实现正弦函数与余弦函数的相互转化.公式一一六都叫做诱导公式.提出问题学了六组诱导公式及上例的结果后,能否进一步归纳概括诱导公式,怎样概括?讨论结果:诱导公式一一四,函数名称不改变,这

19、些公式左边的角分别是2k兀+akCZ,兀±a,-a可看作0-a.其中2k兀,兀,0是横坐标轴上的角,因此,上述公式可归结为横坐标轴上的角土a,函数名称不改变.而公式五、六及上面的例1,这些公式左边的角分别是一士a,-a.其中一,3-是纵坐标轴上的角,因此这些公式可归结为纵2222坐标上的角土a,函数名称要改变.两类诱导公式的符号的考查是一致的,故而所有的诱导公式可用十个字来概括:纵变横不变,符号看象限.教师指点学习方法:如果我们孤立地记忆这么多诱导公式,那么我们的学习将十分苦累,且效率低下.学习过程中,能挖掘各个公式的本质特征,寻求它们之间的共性,那么我们对数学公式的记忆就不再是负担

20、了.因此,要求大家多做这方面的工作,以后数学的学习就不再是枯燥无味的了.例如应用思路1例1证实(1)sin(-a)=-cosa;(2)cos(-a)=-sina.22活动:直接应用公式五、六或者通过转化后利用公式五、六解决化简、证实问题3-a)=sin2兀+(-a)=-sin(-a)=-cosa;3(2)cos(一2a)=cos兀+(a)=-cos(-a)=-sina.2.一,一3点评:由公式五及六推得32sin(2a)cos(例2化简(sina)(cosa)(sina)cos5解:原式=(cosa)sin(a)sin(2a)a)sin4(2a)a的三角函数值与角a的三角函数值之间的关系,从而

21、进2k1步可以推广到兀(kCZ)的情形.本例的结果可以直接作为诱导公式直接使用211a)cos(a)cos(-a)cos(a)sin(3a)sin(a)sin(9-a)活动:仔细观察题目中的角,哪些是可以利用公式二一四的,哪些是可以利用公式五、六的.认真应用诱导公式,到达化简的目的.2sinacosacos(a)sina,=-tana.、cosaa)-17x)=cos(-17x)=sin17x,sinx,n4k,kZ,cosnx,n4k1,kZ,sinnx,n4k2,kZ,(cosa)sina(sina)sin(-思路2例1(1)f(cosx)=cos17x,求证:f(sinx)=sin17x

22、;(2)对于怎样的整数n,才能由f(sinx)=sinnx推出f(cosx)=cosnx?活动:对诱导公式的应用需要较多的思维空间,善于观察题目特点,要灵活变形.观察本例条件与结论在结构上类似,差异在于一个含余弦,一个含正弦,注意到正弦、余弦转化可借助sinx=cos(万-x)或cosx=sin(-x).要善于观察条件和Z论的结构特征,找出它们的共性与差异;要注意诱导公式可实现角的形式之间及互余函数名称之间的转移证实:(1)f(sinx)=fcos(-x)=cos17(-x)=cos(8兀+即f(sinx)=sin17x.(2)f(cosx)=fsin(x)=sinn(x)=sin(nnx)=222cosnx,n4k3,kZ,故所求的整数n=4k+1(kCZ).点评:正确合理地运用公式是解决问题的关键所在变式练习-a)的值.3-2解:3.,2.sin(3a-(a)=2a=一+(-a).a)=sin+(-a)=cos(a)=m.6点评:(1)当两个角的和或差是一的整数倍时2(2)化简与所求,然后探求联系,这是解决问题的重要思想方法,它们的三角函数值可通过诱导公式联系起来例2sin&sin(a求是方程5x2-7x-6=0的根,且a为第三象限角,一3一2一?sin(一a)?tan(2a)?tan(a)2的值.cos(a)?cos(a)活动:教师引导学生先确定sin

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论