MATLAB中FFT的使用方法_第1页
MATLAB中FFT的使用方法_第2页
MATLAB中FFT的使用方法_第3页
MATLAB中FFT的使用方法_第4页
MATLAB中FFT的使用方法_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、MATLAB中FFT的使用方法一.调用方法X=FFT(x);X=FFT(x,N);x=IFFT(X);x=IFFT(X,N)用MATLAB进行谱分析时注意:(1)函数FFT返回值的数据结构具有对称性。例:N=8;n=0:N-1;xn=4 3 2 6 7 8 9 0;Xk=fft(xn)Xk =39.0000           -10.7782 + 6.2929i        0 - 5.0000i  

2、4.7782 - 7.7071i   5.0000             4.7782 + 7.7071i        0 + 5.0000i -10.7782 - 6.2929iXk与xn的维数相同,共有8个元素。Xk的第一个数对应于直流分量,即频率值为0。(2)做FFT分析时,幅值大小与FFT选择的点数有关,但不影响分析结果。在IFFT时已经做了处理。要得到真实的振幅值的大小,只

3、要将得到的变换后结果乘以2除以N即可。二.FFT应用举例例1:x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t)。采样频率fs=100Hz,分别绘制N=128、1024点幅频图。clf;fs=100;N=128;   %采样频率和数据点数n=0:N-1;t=n/fs;   %时间序列x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t); %信号y=fft(x,N);    %对信号进行快速Fourier变换mag=abs(y);     %

4、求得Fourier变换后的振幅f=n*fs/N;    %频率序列subplot(2,2,1),plot(f,mag);   %绘出随频率变化的振幅xlabel('频率/Hz');ylabel('振幅');title('N=128');grid on;subplot(2,2,2),plot(f(1:N/2),mag(1:N/2); %绘出Nyquist频率之前随频率变化的振幅xlabel('频率/Hz');ylabel('振幅');title('N=128&

5、#39;);grid on;%对信号采样数据为1024点的处理fs=100;N=1024;n=0:N-1;t=n/fs;x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t); %信号y=fft(x,N);   %对信号进行快速Fourier变换mag=abs(y);   %求取Fourier变换的振幅f=n*fs/N;subplot(2,2,3),plot(f,mag); %绘出随频率变化的振幅xlabel('频率/Hz');ylabel('振幅');title('N=1024');g

6、rid on;subplot(2,2,4)plot(f(1:N/2),mag(1:N/2); %绘出Nyquist频率之前随频率变化的振幅xlabel('频率/Hz');ylabel('振幅');title('N=1024');grid on;运行结果:fs=100Hz,Nyquist频率为fs/2=50Hz。整个频谱图是以Nyquist频率为对称轴的。并且可以明显识别出信号中含有两种频率成 分:15Hz和40Hz。由此可以知道FFT变换数据的对称性。因此用FFT对信号做谱分析,只需考察0Nyquist频率范围内的福频特性。若没有给 出采样频率和

7、采样间隔,则分析通常对归一化频率01进行。另外,振幅的大小与所用采样点数有关,采用128点和1024点的相同频率的振幅是有不同的表 现值,但在同一幅图中,40Hz与15Hz振动幅值之比均为4:1,与真实振幅0.5:2是一致的。为了与真实振幅对应,需要将变换后结果乘以2除以N。例2:x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t),fs=100Hz,绘制:(1)数据个数N=32,FFT所用的采样点数NFFT=32;(2)N=32,NFFT=128;(3)N=136,NFFT=128;(4)N=136,NFFT=512。clf;fs=100; %采样频率Ndata=32;

8、 %数据长度N=32; %FFT的数据长度n=0:Ndata-1;t=n/fs;   %数据对应的时间序列x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t);   %时间域信号y=fft(x,N);   %信号的Fourier变换mag=abs(y);    %求取振幅f=(0:N-1)*fs/N; %真实频率subplot(2,2,1),plot(f(1:N/2),mag(1:N/2)*2/N); %绘出Nyquist频率之前的振幅xlabel('频率/Hz');

9、ylabel('振幅');title('Ndata=32 Nfft=32');grid on;Ndata=32;   %数据个数N=128;     %FFT采用的数据长度n=0:Ndata-1;t=n/fs;   %时间序列x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t);y=fft(x,N);mag=abs(y);f=(0:N-1)*fs/N; %真实频率subplot(2,2,2),plot(f(1:N/2),mag(1:N/2)*2/N); %绘出N

10、yquist频率之前的振幅xlabel('频率/Hz');ylabel('振幅');title('Ndata=32 Nfft=128');grid on;Ndata=136;   %数据个数N=128;     %FFT采用的数据个数n=0:Ndata-1;t=n/fs; %时间序列x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t);y=fft(x,N);mag=abs(y);f=(0:N-1)*fs/N;   %真实频率subplot(2,2

11、,3),plot(f(1:N/2),mag(1:N/2)*2/N); %绘出Nyquist频率之前的振幅xlabel('频率/Hz');ylabel('振幅');title('Ndata=136 Nfft=128');grid on;Ndata=136;    %数据个数N=512;    %FFT所用的数据个数n=0:Ndata-1;t=n/fs; %时间序列x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t);y=fft(x,N);mag=abs(y);f=(0

12、:N-1)*fs/N;   %真实频率subplot(2,2,4),plot(f(1:N/2),mag(1:N/2)*2/N); %绘出Nyquist频率之前的振幅xlabel('频率/Hz');ylabel('振幅');title('Ndata=136 Nfft=512');grid on;结论:(1)当数据个数和FFT采用的数据个数均为32时,频率分辨率较低,但没有由于添零而导致的其他频率成分。(2)由于在时间域内信号加零,致使振幅谱中出现很多其他成分,这是加零造成的。其振幅由于加了多个零而明显减小。(3)FFT程序将数据

13、截断,这时分辨率较高。(4)也是在数据的末尾补零,但由于含有信号的数据个数足够多,FFT振幅谱也基本不受影响。对信号进行频谱分析时,数据样本应有足够的长度,一般FFT程序中所用数据点数与原含有信号数据点数相同,这样的频谱图具有较高的质量,可减小因补零或截断而产生的影响。例3:x=cos(2*pi*0.24*n)+cos(2*pi*0.26*n)(1)数据点过少,几乎无法看出有关信号频谱的详细信息;(2)中间的图是将x(n)补90个零,幅度频谱的数据相当密,称为高密度频谱图。但从图中很难看出信号的频谱成分。(3)信号的有效数据很长,可以清楚地看出信号的频率成分,一个是0.24Hz,一个是0.26

14、Hz,称为高分辨率频谱。可见,采样数据过少,运用FFT变换不能分辨出其中的频率成分。添加零后可增加频谱中的数据个数,谱的密度增高了,但仍不能分辨其中的频率成分,即谱的分辨率没有提高。只有数据点数足够多时才能分辨其中的频率成分。Fs = 100; % Sampling frequencyT = 1/Fs; % Sample timeL = 50; % Length of signalt = (0:L-1)*T; % Time vectorx = sin(2*pi*10*t);NFFT = 2nextpow2(L); Y = fft(x,NFFT)/L;f = Fs/2*linspace(0,1,

15、NFFT/2+1);% Plot single-sided amplitude spectrum.plot(f,2*abs(Y(1:NFFT/2+1) title('Single-Sided Amplitude Spectrum of y(t)')xlabel('Frequency (Hz)')ylabel('|Y(f)|')1。为什么用2nextpow2(L)而不直接是L?2。Y = fft(x,NFFT)/L为什么除以L。3。f = Fs/2*linspace(0,1,NFFT/2+1);为什么用0,1,NFFT/2+1。最后2*abs(Y(

16、1:NFFT/2+1)是什么意思?答案: 1 、一般频域的采样点要大于时域的采样点,最好是2的幂数,便于计算。可以看看数字信号处理这类的书 2、 假设采样频率为Fs,信号频率F,采样点数为N。那么FFT之后结果就是一个为N点的复数。每一个点就对应着一个频率点。这个点的模值,就是该频率值下的幅度特性。具体跟原始信号的幅度有什么关系呢?假设原始信号的峰值为A,那么FFT的结果的每个点(除了第一个点直流分量之外)的模值就是A的N/2倍 所以这里应该是 3 linspace(x0,x1,n) 其中n代表的是点的数目,即分成n-1等分。其实Fs/2*linspace(0,1,NFFT/2+1);就是在0到1之间分成NFFT/2份,也就是FS/NFFT,也就是设置间隔点的频率。最后2*abs(Y(1:NFFT/2+1)因为前面Y = f

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论