




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、§23 公式法授课教师: 大朋中学孙启军课时安排 1课时教学内容及教法分析 公式法是解一元二次方程的通法,是配方法的延续,即它实际上是配方法的一般化和程序化利用它可以更为简捷地解一元二次方程 本节课的重、难点是利用求根公式来解一元二次方程 公式法的意义在于:对于任意的一元二次方程,只要将方程化为一般形式,然后确定a、b、c的值,在b2-4ac0的前提条件下,将a、b、c的值代入求根公式即可求出解 因为掌握求根公式的关键是掌握公式的推导过程,而掌握推导过程的关键又是掌握配方法,所以在教学中,首先引导学生自主探索一元二次方程的求根公式,然后在师生共同的讨论中,得到求根公式,并利用公式解一
2、些简单的数字系数的一元二次方程教学目标 (一)教学知识点 1一元二次方程的求根公式的推导 2会用求根公式解一元二次方程 (二)能力训练要求 1通过公式推导,加强推理技能训练,进一步发展逻辑思维能力 2会用公式法解简单的数字系数的一元二次方程 (三)情感与价值观要求 1通过运用公式法解一元二次方程的训练,提高学生的运算能力,养成良好的运算习惯教学重点一元二次方程的求根公式教学难点 求根公式的条件:b2-4ac0教学方法 讲练相结合教具准备 多媒体课件 教学过程 巧设现实情景,引入课题 师前面我们学习了利用配方法解一元二次方程下面来做一练习以巩固其解法(出示投影片)1用配方法解方程2x2-9x+8
3、=0 生解:,2x2-9x+8=0 两边都除以2,得 移项,得; 配方,得 两边分别开平方,得 师同学们做得很好,从以上解题过程中,我们发现:利用配方法解一元二次方程的基本步骤是相同的因此,如果能用配方法解一般的一元二次方程ax2+bx+c0(a0),得到根的一般表达式,那么再解一元二次方程时,就会方便简捷得多 这节课我们就来探讨一元二次方程的求根公式 讲授新课 师刚才我们已经利用配方法求解了一个一元二次方程,那你能否利用配方法的基本步骤解方程ax2+bx+c0(a0)呢? 大家可参照解方程2x2-9x+8=0的步骤进行 生甲因为方程的二次项系数不为1,所以首先应把方程的二次项系数变为1,即方
4、程两边都除以二次项系数a,得 x2+ =0 生乙因为这里的二次项系数不为0,所以,方程ax2+bx+c0(a0)的两边都除以a时,需要说明a0师对,以前我们解的方程都是数字系数,显然就可以看到:二次项系数不为0,所以无需特殊说明,而方程ax2+bx+c0(a0)的两边都除以a时,必须说明a0 好,接下来该如何呢? 生丙移项,得x2+配方,得x2+,(x+. 师这时,可以直接开平方求解吗? 生丁不,还需要讨论 因为a0,所以4a2>0当b2-4ac0时,就可以开平方 师对,在进行开方运算时,被开方数必须是非负数,即要求0因为4a2>0恒成立,所以只需b2-4ac是非负数即可 因此,方
5、程(x+)2的两边同时开方,得x+=±. 大家来想一想,讨论讨论: ±=±吗? 师当b2-4ac0时,x+=±=±因为式子前面有双重符号“±”,所以无论a>0还是a<0,都不影响最终的结果: ±所以x+=±,x=-±= 一般地,对于一元二次方程ax2+bx+c0(a0),当b2-4ac0时,它的根是x=师由此我们可以看到:一元二次方程ax2+bx+c0(a0)的根是由方程的系数a、b、c确定的因此,在解一元二次方程时,先将方程化为一般形式,然后在b2-4ac0的前提条件下,把各项系数a、b、c
6、的值代入,就可以求得方程的根用求根公式解一元二次方程的方法称为公式法。 注:(1)在运用求根公式求解时,应先计算b2-4ac的值;当b2-4ac>0时,可以用公式求出两个不相等的实数解;当b2-4ac=0时,可以求出方程有两个相等的实数根,当b2-4ac0时,方程没有实数解就不必再代入公式计算了 (2)把方程化为一般形式后,在确定a、b、c时,需注意符号 接下来,我们来看一例题(出示投影片)例题解方程2x2-9x+8=0分析:要求方程2x2-9x+8=0的解,需先确定a、b、c的值注意a、b、c带有符号解:这里a2,b-9,c8b2-4ac=(-9)2-4×2×8 1
7、70,即 师好,我们来共同总结一下用公式法解一元二次方程的一般步骤 师生共析其一般步骤是: (1)把方程化为一般形式,进而确定a、b,c的值(注意符号) (2)求出b2-4ac的值(先判别方程是否有根) (3)在b2-4ac0的前提下,把a、b、c的直代入求根公式,求出的值,最后写出方程的根 师接下来我们通过练习来巩固用公式法求解一元二次方程的方法 课堂练习 (一)课本P57随堂练习 1、21用公式法解下列方程: (1) x2-7x+180; 解:这里a1,b-7,c-18b2-4ac=(-7)2-4×1×(-18) 1210,x=,即x19,x2-2 (2) 解:原方程可
8、化为:这里a=1,b=,c=3(3)(x-2)(1-3x)=6解:去括号:x-2-3x2+6x=6化简为一般式:3x2-7x+8=0这里 a=3, b= -7, c= 8.b2 - 4ac=(-7)2 - 4×3×8=49 - 96= - 47< 0原方程没有实数根2一个直角三角形三边的长为三个连续偶数,求这个三角形的三条边长 解:设中间的数为x,则另外两数为 x-2,x+2根据题意,得 (x+2)2(x-2)2+x2 整理,得x2-8x=0 解这个方程,得 x10,x28 因为直角三角形的边长为正数,所以x10应舍去因此,这个直角三角形的三条边长分别为6,8,10 (二)看课本P56P57,然后小结 课时小结 这节课我们探讨了一元二次方程的另一种解法公式法(1)求根公式的推导,实际上是“配方”与“开平方”的综合应用对于a0,b2-4ac0。以及由a0,知4a2>0等条件在推导过程中的应用,也要弄清其中的道理(2)应用求根公式解一元二次方程,通常应把方程写成一般形
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 法学概论互动学习的试题及答案经验
- 数字营销与社交平台技术试题及答案
- 代码优化与重构考试试题及答案
- 广东省广州市名校2025届七年级数学第二学期期末调研试题含解析
- 解锁2025年软件设计师试题及答案
- 2025年软考软件设计师备考秘籍试题及答案
- 上海市行业协会商会评估指标(2025年版)
- 美术教学中的团队合作培养计划
- 企业责任担当的总结与反思计划
- 制定多元化业务拓展计划降低风险
- 2024年贵州省铜仁市公共资源交易中心(市产权交易中心)引进2人历年高频考题难、易错点模拟试题(共500题)附带答案详解
- Ivy-League美国常春藤大学
- (正式版)HGT 6313-2024 化工园区智慧化评价导则
- 自动化设备生产工艺流程图
- 汽车维修总体服务方案
- 儿童骨折微创手术
- 2025届“新课程标准”下的中考道德与法治复习策略 课件
- T-CTTS 0019-2023 数字化实验室等级评价规范
- 索绪尔“语言”和“言语”概念研究
- 2024年地板行业分析报告及未来发展趋势
- 2020-心肌梗死后心力衰竭防治专家共识
评论
0/150
提交评论