




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、基于MATLAB的生产过程中最大利润问题的优化设计20212021学年一学期研究生课程考核读书报告、研究报告考核科目:学生所在院系:学生所在学科:名:号:现代设计理论与方法机电工程学院车辆工程陈松Y100202102题目:基于MATLAB的生产过程中最大利润问题的优化设计基于MATLAB的生产过程中最大利润问题的优化设计在工厂编制生产方案中,使产品的方案利润最大是通常的目标.可是,在生产过程中,总是有种种条件的限制,使得我们的生产本钱增多,从而导致利润并没有到达理想值.为了解决如何在有约束条件下解决最大利润的问题,我们通常将这些有约束的最优化问题转化为无约束最优化问题.而通过MATLAB现成的
2、优化工具箱,我们可以通过调用最正确优化函数求解,从而更好的计算出生产产品所获得最大利润.1 .数学模型的建立建立数学模型,即用数学语言来描述最优化问题,模型中的数学关系式反映了最优化问题所要到达的目标和各种约束条件.而通过这些约束条件,我们能更好的制定新的生产方案,以便克服生产过程中的某些不利于生产的约束,从而更大的降低产品生产本钱,使利润最大化.1.1 设计变量确实定x=设计变量是指设计过程中可以进行调整和优选的独立参数,分为连续变量和离散变量.而本文主要用的是连续变量,设计变量一般表示为:T#2,式中,表示生产产品的台数,而当我们确定了生产每台的利润后,我们就能知道台的利润.1.2 目标函
3、数确实定某工厂能生产A、B、C三种产品,每月生产的数量分别为X-X2,X3,产品每台利润分别为】小,m2,m3,那么可知该厂每月的利润为:Y=m1*X1+m2*X2+m3*X3即目标函数为:F(X)=ml*X,+m,*X,+m;*X3简化为:f(x)=i=l,2,31.3 约束条件的建立生产A、B、C三种产品需用到四种机器VI、V2、V3、V4,每种机器的生产水平分别为KI、K2、K3、K4,所以有:1)用VI每月生产的A、B、C三种部件分别为Nl、N2、N3,那么:g1(x)=Nl*X1+N2*X2+N3*X3<K12)用V2每月生产的A、B、C三种部件分别为NU、N12、N13,贝!
4、J:g2(x)=Nll*X,+N12*X2+N13*X3<K23)用V3每月生产的A、B、C三种部件分别为N21、N22、N23,贝(J:g,(x)=N21*X:+N22*X2+N23*X3<K34)用V4每月生产的A、B、C三种部件分别为N31、N32、N33,贝!J:g4(x)=N31*X+N32*X2+N33*X<K45)每月生产的数量X,sn为大于0的自然数2 .优化方法的选择2.1 MATLAB语言简介MATLAB语言是由美国Mathworks公司开发的集科学计算、数据可视化和程序设计为一体的工程应用软件,现已成为工程学科计算机辅助分析、设计、仿真以至教学等不可缺少
5、的根底软件,它由MATLAB主包、Simulink组件以及功能各异的工具箱组成.MATLAB优化工具箱的应用包括:线性规划和二次规划,求函数的最大值和最小值,多目标优化,约束优化,离散动态规划等,其简洁的表达式、多种优化算法的任意选择、对算法参数的自由设置,可使用户方便地使用优化方法.2. 2优化的应用(1)绘制目标函数的网格图和等值线图由目标函数的网格图和等值线图可观察到目标函数极值点的范围,以验证最优解的可靠性.(2)线性规划线性规划是数学规划中的一个比拟成熟的分支,实际应用也非常广泛,同时也是构成非线性约束优化方法的一种根本算法,优化工具箱中由fmincon函数来解线性规划问题,采用投影
6、法计算,是一种修正的单纯形法.3. 3优化过程中所使用的方法一般对于优化问题,主要是最大优化和最小优化两种问题,本文中求最大利润的优化,我们可以通过构造惩罚函数将有约束优化问题转化为无约束优化问题,从而能更快的求出利润的最大值.4. 4MATLAB解决工程实际问题的步骤(1)根据实际的最优化问题,建立相应的数学模型;(2)对建立的数学模型进行具体的分析和研究,选择恰当的求解方法;(3)根据最优化方法的算法,选择MATLAB优化函数,然后编写求解程序,最后利用计算机求出最优解.3 .应用实例某厂生产A、B、C三种产品,产品每台利润分别为600、500和400元.它所用部件PlP4和部件的生产水平
7、如下表.求如何安排A、B和C的生产方案,使产品的利润最大?表1某产品所用部件及其部件的生产水平件产品、XP1/件P2/件P3/件P件产品每台计划利润/元A2111600B1212500C1120400部件每月生产水平/件1000800800750令生产A、B、C三种产品每月方案生产数量为,x2,X、台,那么方案利润最大值为:maxY=600x1+500x2+400x3;它的约束条件为:2x.+X.+x3<1000;x1+2x2+x.<800;x1+x2+2x3<800;x+2x2<750;X|、x2xx3>03.1 建立最优化数学模型将上述数学模型化为标准形式,即
8、将最大值转化为最小化问题,标准形式如下:minf(x)=-600%1-500x2-400x3s/.g(x)=2X+x2+x3-1000<0g2(x)=Xj+2x2+x3-800<0g.(x)=x,+x2+2x3-800<0<g4(x)=x,+2x2-750<0g5(X)=X<0g6(x)=-x2<0g7(x)=-x3<03.2 构造罚函数求解构造罚函数tnP(x,m)=F(x)+m2min/(xXO)2/-i将上式标准形式转化为下述形式min/(x)=-600%j-500x2-400x3s/.g(x)=-2x,-x2-x3+1000>0g2
9、(x)=-Xj-2x2-x3+800>0=x-x2-2x3+800>0g4(x)=-Xj-2x2+750>0g5(x)=xiNOg6(x)=x2>0g?(x)=>0所以罚函数为P(x,m)=-600x,-500x2-400x3+?min(0,(2X-x?-x3+1000)2+niin(0,(x12xcx3+800)+min(0,(xx?2x"800)+min(0,(-x-2x°+750)2+min(0,xj24-min(0,x2)2+min(0,x3)2dP=-600+2/nmin(0,(-2xj-x7-x3+1000)*(2)+dxx一2mm
10、in(0,(x,2x2-x3+800)*(-1)+2/nmin(0,(-X)x2-2x3+800)*(l)+2mmin(0,(X12x2+750)*(1)+2mmin(0,xj=-500+2mmin(0,(-2x1-x2-x3+1000)*(-1)+dx22mmin(0,(-x12x?-x3+8.0)*(2)+2Hdmin(0,(x-x2-2x3+800)*(-1)+2/7tmin(0,(-x1-2x2+750)*(-2)+2mmin(0,x2)ff_=-400+2mmin(0,(-2x1-x?-x3+1000)*(-l)+dx32mmin(0,(-x1-2x2-x3+800)*(-1)+2m
11、min(0,(-x1-x2-2x3+800)*(-2)+2mmin(0,x3)根据无约束极小的必要条件dPcP_dPdxxdx2dx3化简可得:16x(+14x2+10x3=600/m+920014%1+22x2+10%3=500/?+985010%1+10x2+14%3=400/m+7100从而可得ininP(x,m)的解为:X(m)=(11(679+),97m291(873当郎873+召)m291m当m=l时,X=(388.14,146,56,153.78)T当m=2时,X=(369.07,148.28,151.89)T当m=3时,X=(362.71,148.86,151.26)r当m=4
12、时,X=(359.54,149,14,150.95)T通过这四组数值观察,我们可以得知:m取值越大,相应的XI越来越小,X2越来越大,X3也是逐渐减小,所以我们可以得知:当m趋近无穷大时,有:X=(350.00,150.00,150.00)从而代入目标函数可得:F(x)=-600*350-500*150-400*150=345000即可知该厂每月的最大利润为345000元3.3流程图3.4 蚁群算法1)简介蚁群算法蚁群算法(antcolonyoptimization,ACO),又称蚂蚁算法,是一种用来寻找最优解决方案的机率型技术.它由MarcoDorigo于1992年在他的博土论文中引入,其灵
13、感来源于蚂蚁在寻找食物过程中发现路径的行为.寻找最短路径的蚁群算法来源于蚂蚁寻食的行为.蚁群寻找食物时会派出一些蚂蚁分头在四周游荡,如果一只蚂蚁找到食物,它就返回巢中通知同伴并沿途留下“信息素(外激素pheromone)作为蚁群前往食物所在地的标记.信息素会逐渐挥发,如果两只蚂蚁同时找到同一食物,又采取不同路线回到巢中,那么比拟绕弯的一条路上信息素的气味会比拟淡,蚁群将倾向于沿另一条更近的路线前往食物所在地.蚁群算法设计虚拟的“蚂蚁,让它们摸索不同路线,并留下会随时间逐渐消失的虚拟“信息素,根据“信息素较浓的路线更近的原那么,即可选择出最正确路线.2)原理蚂蚁在路径上前进时会根据前边走过的蚂蚁
14、所留下的分泌物选择其要走的路径.其选择一条路径的概率与该路径上分泌物的强度成正比.因此,由大量蚂蚁组成的群体的集体行为实际上构成一种学习信息的正反应现象:某一条路径走过的蚂蚁越多,后面的蚂蚁选择该路径的可能性就越大.蚂蚁的个体间通过这种信息的交流寻求通向食物的最短路径.蚁群算法就是根据这一特点,通过模仿蚂蚁的行为,从而实现寻优的过程.3)应用情况蚁群算法最初是应用在对称的旅行商问题,如今,随着研究的深入,应用范围不断扩大,现在应用到静态组合优化问题、动态组合优化问题、连续空间优化问题、以及其他领域.4)求解步骤以TSP为例,根本蚁群算法的具体实现步骤如下:(1)参数初始化.令时间仁0和循环次数
15、Nc=O,设置最大循环次数Ncmax,将利个蚂蚁置于个元素(城市)上,令有向图上每条边色/)的初始化信息量rij(t)=constf其中cosf表示常数,且初始时刻Tij(O)=O(2)循环次数Nc-Nc+1.(3)蚂蚁的禁忌表索引号4=1.(4)蚂蚁数目1+1.3.5 Matlab求解由于该函数是线性规划,所以我们可以在matlab中输入如下程序,并把它保存在obj.m中:£=-600-500-400;后211;121;112;120;b=1000;800;800;750;ib=zerps(3,1);Aeq=;'beq=?调用linprog函数:x,fval=linprog(f,A,b,Aeq,beq
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 疫情 监理考试题及答案
- 中医药现代化背景下2025年也门市场拓展机遇与挑战研究报告
- 电竞俱乐部2025年电竞俱乐部电竞馆电竞馆电竞赛事运营与赛事赛事现场管理
- 家具设计与消费者行为关系试题及答案
- 教育教学反思与教师专业发展试题及答案
- 有关gsp认证的试题及答案
- 琼台师范学院《社会学基础》2023-2024学年第二学期期末试卷
- 探索2025年家具行业设计考试中的客户体验优化研究试题及答案
- 监理员试题及答案
- 超限站执法流程详解
- 交通枢纽的安全管理事故预防与应急处理策略
- 《浙江省中药饮片炮制规范》 2015年版
- 2025江苏省安全员B证考试题库
- 第19课《紫藤萝瀑布》课件-2024-2025学年统编版语文七年级下册
- 主题班会AI时代中学生的机遇与成长
- 供电公司故障抢修服务规范
- 初中体育课堂安全教育
- 码头安全生产知识
- 《年产100公斤阿司匹林生产工艺设计》8700字(论文)
- 全屋整装培训
- 《风电安全生产培训》课件
评论
0/150
提交评论