夹半角的模型_第1页
夹半角的模型_第2页
夹半角的模型_第3页
夹半角的模型_第4页
夹半角的模型_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、3夹半角知识目标目标一:掌握夹半角的常见辅助线和常见结论;目标二:掌握夹半角模型的构造及应用模块一夹半角的模型知识导航夹半角模型是初二全等几何另一个非常重要的模型,其证明过程值巧妙,图形变化之丰富,还能与很多知识点(如角平分线定理,勾股定理)相结合,是很多区、校大型考试压轴题中的常客。其辅助线的思路有两种:一是截长补短,二是旋转。学会截长补短可以解决基本问题,而理解旋转才能真正理解这种模型.一|夹半角模型分类:(1)90度夹45度;(2)120度夹60度;(3)2a夹a.题型一90度夹45度【例1】如图,在四边形ABCD中,/BAD=ZB=ZC=ZD=90°,AB=BC=CD=AD,

2、E在BC上,F在CD上,且/EAF=45°,求证:(1)BE+DF=EF(2)/AEB=/AEF.【练】在例1的条件下,若E在CB延长线上,F在DC延长线上,其余条件不变,证明:(1) DF-BE=EF;(2) /AEB+ZAEF=180°.【例2】已知4ABC为等腰三角形,/ACB=90°,M、N是AB上的点,/MCN=45°,求证:AM2+BN2=MN2.【练】在例2中,若M在BA延长线上,N在AB上,其余条件不变,试探究AM、BN、NM之间的关系.【知识扩充】勾股定理:直角三角形两直角边的平方和等于斜边的平方.夹边角和勾股定理结合会产生很多有趣的结

3、论,比如:【变式1】如图,在四边形ABCD中,/BAD=ZB=ZC=ZD=90°,AB=BC=CD=AD.F为CD中点,点E在BC上,且/EAF=45°,求证:点E为线段BC靠近B的三等分点.【变式2】如图,在四边形ABCD中,/BAD=ZB=ZC=ZD=90°,AB=BC=CD=AD.F为CD中点,点E在BC上,点E为线段BC靠近B的三等分点,求证:/EAF=45°.【变式3】已知4ABC为等腰直角三角形,/ACB=90°,CDLAB于D,M是AD的中点,在CM的右侧作/MCN=45°交BD于点N,求证:N是线段BD靠近D的三等分点

4、.【变式4】已知4ABC为等腰直角三角形,/ACB=90°,CDAB于D,M是AD的中点,N是线段BD靠近D的三等分点,求证:/MCN=45°.AMDArB题型二120度夹60度【例3】已知如图,4ABC为等边三角形,/BDC=120°,DB=DC,M、N分别是AB、AC上的动点,且/MDN=60°,求证:MB+CN=MN.【练】如图,四边形ABCD中,/A=/BCD=90°,ZADC=60°,AB=BC,E、F分别在AD、DC延长线上,且/EBF=60°,求证:AE=EF+CF.【拓】(汉阳12期中)在等边4ABC的两边A

5、B、AC所在直线上分别有两点M、N.D为ABC外一点,且/MDN=60°,ZBDC=120°,BD=DC.探究:当M、N分别在直线AB、AC上移动时,BM、NC、MN之间的数量关系以及4AMN的周长Q与等边4ABC的周长L的关系.(1)当点M、N在边AB、AC上,且DM=DN时,BM、NC、MN之间的数量关系是,Q、r;此时=;(不必证明)(2)当点M、N在边AB、AC上,且当DM七N时,猜想(1)问的两个接刘海成立吗?写出你的猜想并加以证明;(3)当M、N分别在边AB、CA的延长线上时,若AN=2,则Q=(用含有L的式子表示)题型二2a夹a【例4】如图,在四边形ABDC中

6、,M、N分别为AB、AC上的点,若/BAC+/BDC=180°,BD=DC/MDN/BDC,求证:BM+CN=MN.,2【练】如图,在例4的条件下,若M、N分别为BA延长线、AC延长线上的点,ZBAC+ZBDC=180°,BD=DC,/MDN=1/BDC,探究:线段BM、CN、MN的数量关系.2模块二夹半角模型的构造备注:以下题目可能会使用到勾股定理【例5】(2012年武珞路八上期中)如图,在直角坐标系中,A点的坐标为(a,0),B-2AAA点的坐标为(b,0),且a、b满足Ya二但二=0,若D(0,4),EBXOBa12于B,且满足/EAD=45°,试求线段EB

7、的长度.【例6】(2014年粮道街八上期中)如图,在平面直角坐标系中,点A(0,b),点B(a,0),点D(d,0),且a、b、d满足7a+1+|b3|+(2d)2=0,DE±x轴且/bed=ZABD,BE交y轴于点C,AE交X轴于点F.(1)求点A、点B、点D的坐标;(2)求点E、点F的坐标;(3)如图,过P(0,-1)作X轴的平行线,在该平行线上有一点Q(点Q在点P的右侧)使/QEM=45°,QE交X轴于点N,ME交y轴的正半轴于点M,确定AM-MQ的值.PQ【例7】点A(a,0)、B(0,b)分别在x轴、y轴上,且|a-b+a2-6a+9=0.且射线CA平分4AOB(

8、2)如图1,若线段ab的长为372,点C为y轴负半轴上的一点,的外角/BAx,求点C的坐标.(3)如图2,取点D(0,2)并连接AD,将4AOD烟直线AD折叠得到ADE,过点B作y轴的垂线BF交射线DE的延长线于F点,连接AF,求BF的长.【课后作业】夹半角1.(2015年洪山区八中期中)如图,E是正方形ABCD中CD边上的任意一点,以点A为中心,把4ADE顺时针旋转90°得AABEi,/EAEi的平分线交BC边于点F,求证:4CFE的周长等于正方形ABCD的周长的一半.2 .如图ABC是边长为3的等边三角形,4BDC是顶角/BDC=120°的等腰三角形,以D为顶点作一个60°的角,角的两边分别交AB、AC于M、N,连接MN,则4AMN的周长为3 .已知如图,五边形ABCDE中,AB=AE,BC+DE=CD,ZABC+ZAED=180°.求证:(1)AD平分

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论