




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、教学设计平行线的判定【教学重点与难点】教学重点:探索并掌握直线平行的判定方法教学难点:直线平行的判定方法的应用【教学目标】1、经历观察、操作、想像、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力。2、经历探究直线平行的判定方法的过程,掌握直线平行的判定方法,领悟归纳和转化的数学思想方法。【教学方法】通过创设情境,以问题为载体给学生提供探索的空间,引导学生积极探索。教学环节的设计与展开,都以问题的解决为中心,使教学过程成为在教师指导下学生的一种自主探索的学习活动过程,在探索中形成自己的观点。【教学过程】一、复习旧知引入新课(设计说明:复习同位角、内错角、同旁内角的识别,为探究利用
2、角的关系判断两直线平行做好准备,由平行公理推论自然引入新课。)1 .如图,已知四条直线ABAGDEFG(1) /1与/2是直线和直线被直线所截而成的角.(2) /3与/2是直线和直线被直线所截而成的角.(3) /5与/6是直线和直线被直线所截而成的角.(4) /4与/7是直线和直线被直线所截而成的角.(5) /8与/2是直线和直线被直线所截而成的角.2 .如果a/b,b/c,那么,理由是.通过上节课的学习我们知道根据平行公理的推论可以判定两直线平行,除此之外,还有哪些方法可以判定两直线平行呢?这是我们这节课要研究的问题。由此导入新课(教学说明:能够熟练的从几何图形中熟练识别出同位角、内错角、同
3、旁内角及它们是哪两条直线被哪一直线所截形成的,对利用角的关系判断两直线平行至关重要,因此在新课开始之前,对相关知识进行复习,是非常必要的;在复习过程中,要关注学生识别的熟练程度,及时地进行调整与补充。)二、探索新知(设计说明:利用问题引导学生探究平行线的判定方法,调动学生的求知欲,给学生提供自主探索、与合作交流的空间,培养学生主动参与数学活动的意识。)1、平行线的判定方法1(1)问题:在用直尺和三角形画平行线过程中,三角尺起着什么样的作用?学生演示画图过程并分析出在画平行线的过程中,三角板是为画/pHF与/BGF相等。问题:这两个角具有什么样的位置关系,我们是否得到一个判定两直线平行的方法?教
4、师引导学生正确表达平行线的判定方法1并板书。C*FDABF、,一一、一一一,E、一,“方法1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。简单记为:同位角相等,两条直线平行。(2)教师引导学生,结合图形用符号语言表达两直线平行的判定方法1:如果/1=/2,那么AB/CD.教师强调判定两直线平行方法1的条件中有两层意思:第一层这两个角是这两条被第三条直线所截而成的一对同位角;第二层这两个角相等两者缺一不可。(3)简单应用.AICDEF教师表演木工用米尺画平行线过程,让学生说出用角尺画平行线的道理教师规范说理过程:因为/DCBW/FEB是直线CDEF被AB所截而成的同位角,而且/
5、DCB=FEB即同位角相等,根据直线平行判定方法,从而CDER提出问题:两条直线线被第三条直线所截形成的内错角相等时,是否两直线也平行?同旁内角之间又有怎样的关系时两直线平行呢?2、判定方法2(1)问题:若上图中/pHF与HGA那么AB/CD为彳f么?分析:目前我们掌握了两种判定两直线平行的方法,但问题的条件都不符合,而根据问题的情景(两条直线被第三条直线所截),可以利用判定方法1同位角相等,两直线平行来解决问题,这就需要将以问题中的内错角相等转化为同位角相等。可以先放手让学生尝试独立解决,后小组交流师生共同规范说理过程:因为/pHF之HGA,而/BGFWHGA(t顶角相等),所以/1=/2,
6、即同位角相等因止匕AB/CD(2)师生归纳判定两条直线平行的方法2,教师板书:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。简单记为:内错角相等,两直线平行。教师引导学生结合图形用符号语言表达方法2:如果/pHF叱HGA那么AB/CD3、判定方法3讨论:同旁内角数量上满足彳f么关系时,两直线平行?学生根据图像先排除相等,当/4是锐角时,/2是钝角才有可能使a/b,进一步观察猜想:如果同旁内角互补时,两条直线平行,即如果/2+/4=180°,那么a/bo学生利用平行判定方法1或方法2来说明猜想正确.教师根据学生说理,再准确地板书:因为/4+/2=180°,而/
7、4+/1=180°,根据同角的补角相等,所以有/2=/1,即同位角相等,从而a/bo因为/4+/2=180°,而/4+/3=180°,根据同角的补角相等,所以有/3=/2,即内错角相等,从而a/bo师生归纳两条直线平行的判定方法3,教师板书:两条直线被第三条直线所截,如果同旁内角互补,那么两条直线平行。简单记为:同旁内角互补,两直线平行。结合图形用符号语言表达:如果/4+72=180°,那么a/bo教师总结:我们在遇到一个新问题时常常利用已学的知识将其转化为已知的(或以解决的)问题,在这节课中,平行线的判定方法2、3就是借助于对顶角相等或邻补角互补,将内
8、错角相等转化为同位角相等,或将同旁内角互补转化为同位角相等而得出的,这种将未知转化为已知的方法是数学中的一种重要方法,这也是我们今后推理常用的方法。(教学说明:平行线的判定方法1是结合平行线的画法给出的,大部分学生可能会用直尺和三角板画平行线,但学生并不明白画图的原理,因此可能有部分学生并不能熟练的画图,也不能理解三角板从中所起的作用,因此在教学时,要给学生充分的回忆和分析的时间。判定方法2、3是采用了探讨问题的方式,引导学生通过自主探索、合作交流与分析去发现角与两直线平行之间的关系,在分析思考的过程中注意向学生渗透分析问题的方法。同时要特别关注三个结论的三种语言(文字、图形、符号)的相互转化
9、,尤其是符号语言这是今后推理的基础。完成三个判定方法的探究后教师进行了了一个方法小结,有意识的让学生认识数学中的转化思想,让学生逐步得学会应用它。)初步应用:例:在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行吗?为什么?分析:垂直与直角总联系在一起.,至于要判定两条直线是否平行,先考虑学过哪些判定平行线的方法,题中的条件与哪种判定方法的条件相同。学生先口述判断与理由,教师纠正并规范板书两步推理过程:因为b±a,c±a,所以/1=/2=90°,从而b/c.教师说明:这个道理过程有两个因为所以.第一个“因为”“所以”是根据垂直定义,第二个只写出“所以
10、”的内容b/c,中间省略一个“因为”的内容,这个内容就是第一个“所以”中的/1=/2.这样处理是使说理表达更简练,第二个“因为”、“所以”是根据同位角相等,两直线平行.例题讲解后,师提问:你还能利用其他方法说明b/c吗?教师鼓励学生模仿课本方法用图(1)内错角相等的方法写出理由,用图(2)同旁内角互补的方法写出理由.(1) (2)*Lacaibc如果/1,/2不是同位角,也不是内错角、同旁内角,如图(3),教师启发学生用化归思想将它转化为已知问题来解决,并且有条理地陈述理由:如图(3),因为a±b,c±a,所以/1=90°,72=90°.因为/3=/1=
11、90°,从而b/c(同位角相等,两直线平行).(3)(教学说明:此问题的难度不大,是平行线判定的应用方法可以有多种,鼓励学生用多种方法解决,现在对于推理证明的要求已经到了简单推理的层次,因此,在解决问题的过程中,不仅要关注学生说理的能力,还要关注学生是否能规范书写推理过程)三、巩固训练熟练技能(设计说明:通过形式不同的练习加强学生对知识的理解,训练学生灵活应用知识解决问题的能力)一、判断题1 .两条直线被第三条直线所截,如果同位角相等,那么内错角也相等。()2 .两条直线被第三条直线所截,如果内错角互补,那么同旁内角相等。()二、填空1 .如图1,如果/3=/7,或,那么,理由是;如
12、果/5=/3,或,那么,理由是;如果/2+75=或者,那么a/b,理由是.(2)(3)2 .如图2,若/2=/6,则/,如果/3+Z4+Z5+Z6=180°那么/,如果/9=,那么AD/BC;如果/9=,那么AB/CD.三、选择题1 .如图3所示,下列条件中,不能判定AB/CD的是()A.AB/EF,CD/EFB./5=/A;C./ABO/BCD=180D.Z2=Z32 .右图,由图和已知条件,下列判断中正确的是()A.由/1=/6,得AB/FG;B.由/1+/2=/6+/7,得CE/EIC.由/1+/2+/3+/5=180°,得CE/FI;D.由/5=/4,得AB/FG四
13、、已知直线a、b被直线c所截,且/1+/2=180°,试判断直线a、b的位置关系,并说明理由.AE3k-r/X答案:一、1.V2.V二、1./1=25求/2=76或/4=Z8,a/b,同位角相等,两直线平行,或/2=/8,a/b,内错角相等,两直线平行,180°,/3+/8=180°,同旁内角互补,两条直线平行.2.BC/AD,AD/BC,ZBAD/BCD三、1.D2.D四、a/b,可以用三种平行线判定方法加以说明,其一:因为/1+/2=180°,又/3=/1(对顶角相等)所以/2+/3=180°,所以a/b(同旁内角互补,两直线平行),其他略
14、.|(教学说明:熟练的识图能力以及简单的推理能力都是练习所要训练的,在教学过程中,要注意给学生充分的思考交流时间。让学生在交流中掌握知识,形成能力)四、总结反思,情意发展(设计说明:设计了以下三个问题,让学生围绕这三个问题,先反悟,后谈自身的收获和疑问,最后师生共同归纳总结)1 .本节课你认为自己解决的最好的问题是什么?2 .本节课你有哪些收获?3 .在本节课的学习中,你还存在哪些疑问?(教学说明:通过对以上三个问题的思考引导学生回顾整节课的学习历程,让学生对知识有一个沉淀、吸收的过程。止匕外,由于学生的学习基础、反思归纳能力不同,所以不同的学生可能会有不同的收获,学生之间的这种差异也是一种学
15、习资源。通过教师为学生提供的交流互动的平台,使学生倾听别人的想法、意见、收获的同时,不断完善自己的认识,形成完整的知识结构.)五、课堂小结1 .本节主要学习了平行线的三种判定方法。2 .主要用到的思想方法是转化思想。3 .注意的问题平行线的判定方法的灵活应用。六、布置课后作业:课本16页习题2、4、5、7七、拓展延伸如图:请补充一个合适的条件,使得DEE/BC(教学说明:本题是一个开放性问题,考查学生对平行线判定地掌握,鼓励学生尽可能多的找出符合要求的条件,以培养学生多角度观察思考问题的习惯)【评价与反思】本节课从学生所熟悉的知识-平行线的画法入手,引入平行线的判定方法1,在此基础上提出:两条直线线被第三条直线所截形成的内错角相等时,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 内蒙古大学创业学院《建筑电气消防系统》2023-2024学年第二学期期末试卷
- 三亚航空旅游职业学院《系统与技术》2023-2024学年第二学期期末试卷
- 重庆电讯职业学院《现代仪器分析测试技术》2023-2024学年第二学期期末试卷
- 湖北汽车工业学院科技学院《音乐教学法》2023-2024学年第二学期期末试卷
- 广西工商职业技术学院《图形图像软件》2023-2024学年第二学期期末试卷
- 北京交通运输职业学院《临床血液学检验技术》2023-2024学年第二学期期末试卷
- 山东石油化工学院《计算机辅助实验》2023-2024学年第二学期期末试卷
- 甘肃林业职业技术学院《商业智能数据分析》2023-2024学年第二学期期末试卷
- 贵州轻工职业技术学院《建筑信息建模(BM)技术应用》2023-2024学年第二学期期末试卷
- 伊春职业学院《机械数字化辅助工程》2023-2024学年第二学期期末试卷
- 2024年泉州实验中学初一新生入学考试数学试卷
- 车间技能矩阵管理制度
- 陶艺店管理制度
- 2025-2030中国储能电站行业市场深度分析及前景趋势与投资研究报告
- 2025年标准租房合同范本
- AI在财务管理中的应用策略研究
- 三元空间下个人化IP综艺《灿烂的花园》叙事与价值研究
- 2025届安徽省池州市普通高中高三教学质量统一监测政治试卷含、答案
- 2025鄂尔多斯生态环境职业学院辅导员考试题库
- 2024年呼和浩特市消防救援支队招聘政府专职消防员笔试真题
- 2025年安徽省C20教育联盟中考“功夫”卷(二)物理
评论
0/150
提交评论