




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2020年江西省鹰潭市贵溪虎岩中学高二数学文联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1等于()A.1B.e-1C.eD.e+1A略2 .已知p是r的充分不必要条件,s是r的必要条件,q是s的必要条件,那么p是q成立的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3 .已知定义在这上的函数满足,”=-九)当时,y(咛-卜一/CO如旧1"5,其中£>0,若方程§有3个不同的实数根,则上的取值范围为424值?。Q-3)A.JB.JC.,4.若方程表示焦点在尸轴
2、上的双曲线,则从、F满足的条件是()A.卅0,且C.0,且八。B.<>0,且8工口D.A<0,且3<0C略5.设/是定义在R上的增函数,且对于任意的K都有了"-工)+/0+力=°恒成以4一2印十八储一X用)0立.如果实数襁五满足不等式组,那么沸'+/的取值范围是()A.(3,7)B.(9,25)C.(13,49)D.(9,49)参考答案:C6.同时掷两个骰子,则向上的点数之积是3的概率是AB.CTD.362121ISD因为两个骰子掷出的点数是相互独立的,给两个骰子编号为甲、乙,甲向上的点数是1乙向上的点数是3和甲向上的点数是3乙向上的点数是1
3、是两之积是3,所以11111_x_+_x_概率是飞飞飞飞12,故选。沏=2押由Q)7.若sm江十CHS4等于A.2B.2C.二D.8 .等差数列an的前n项和S(n=1,2,3)当首项ai和公差d变化时,若a5+a8+aii是个定值,则下列各数中为定值的是A.S17B,Si8C.S15D.Si6C【考点】等差数列的前n项和.【分析】根据选择项知,要将项的问题转化为前n项和的问题,结合前n项和公式,利用等差数列的性质求得【解答】解:由等差数列的性质得:a5+aii=2a8:a5+a8+aii为定值,即a8为定值15ad名1仁)15C2a<j):Si5为定值故选C【点评】注意本题中的选择项也
4、是解题信息.9 .如图是一个容量为200的样本频率分布直方图,则样本数据落在范围i3,i7)的频数为(A.81B.36C.24D.12C【考点】频率分布直方图.【专题】计算题;概率与统计.【分析】先求出样本数据落在13,17)内的频率,再求出样本数据落在13,17)内的频数.【解答】解:由频率分布直方图可知,样本数据落在13,17)内的频率为1-(CL02+CL0W+0.09)又4L=0.12.样本数据落在13,17)内的频数为0.12X200=24.故选C.【点评】本题考查读频率分布直方图的能力和利用统计图获取信息的能力,同时考查频率、频数的关系,属于基础题.10 .已知小上即HE,则/(2
5、013句+“(2013剔=()A.-1B.0C.1D.2A二、填空题:本大题共7小题,每小题4分,共28分11 .用秦九韶算法求多项式f(x)=12+35x8x2+79x3+6x4+5x5+3x6的值,当x=4时,V4的值为.22012.函数y=lg(12+x-x2)的定义域是x|一3Vx4【考点】函数的定义域及其求法.【专题】函数的性质及应用.【分析】令12+x-x2>0,解不等式即可.【解答】解:由12+xx2>0,即x2x12v0解得3Vx<4.所以函数的定义域为x|-3vxv4.故答案为:x|-3<x<4.【点评】本题考查函数定义域的求解,属基础题,难度不
6、大.Tt考占i、定积分.专计算题.k:结合导数公式,找出cosx+1的原函数,用微积分基本定理代入进行求解.i-裁J-K(cosx+1)dx解:=(sinx+x)=sin0+0sin(十)司二%故答案为:TT.占/、平:本题考查了导数公式及微积分基本定理,属于基本知识、基本运算的考查.14.已知数组(xi,yi),(X2,y2),,(xqyi。满足线性回归方程V=b上则(X0,yo)满足线性回归方程V=bH色”是“。-10,Ji+T/打1口10”的.条件.(填充分不必要、必要不充分、充要)必要不充分【考点】回归分析的初步应用;必要条件、充分条件与充要条件的判断.【分析】根据线性回归方程必过样本
7、中心点,但满足方程的点不一定是样本中心点,即可得到结论.【解答】解:根据线性回归方程必过样本中心点,但满足方程的点不一定是样本中心点,-a中时可得“(X0,yo)满足线性回归方程尸bx+a”是“区厂1°,010”的必要不充分条件.故答案为:必要不充分【点评】本题考查回归分析的初步应用,考查四种条件,解题的关键是利用线性回归方程必过样本中心点,但满足方程的点不一定是样本中心点3215 .甲、乙两名选手进行围棋比赛,甲选手获胜的概率为N,乙选手获胜的概率为N,有如下两种方案,方案一:三局两胜;方案二:五局三胜.对于乙选手,获胜概率最大的是方案.万案一略20/二5m+二0)16 .函数工的
8、最小俏为17 .若圆锥的侧面积为2不,底面面积为附,则该圆锥的体积为参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18 .设命题F:函数/Y戢7在区间-11内不单调;命题?:当"(sm)时,不等式炉-以+1>0包成立.如果命题尹“q为真命题,户八q为假命题,求口的取值范围./十I1O次e=x+x工何成立,即以<2<a<219.已知数列an满足S+an=2n+1,(1)写出a,a%a3,并推测an的表达认;(2)用数学归纳法证明所得的结论。3722解:(1)&=2,a2=4,as=口猜测an=22"(2)
9、由(1)已得当n=1时,命题成立;1假设n=k时,命题成立,即ak=22,当n=k+1时,ai+a2+ak+ak+1+ak+i=2(k+1)+1,且ai+a2+ak=2k+1-ak,W+2上+1+1=2"工:2料=2+2J,盟产士一即当n=i-Fl时,命题成卫.根据得匹jfj4-2都成立1K20 .(本题12分)为了了解小学五年级学生的体能情况,抽取了实验小学五年级部分学生进行踢键子测试,将所得的数据整理后画出频率分布直方图(如图),已知图中从左到右的前三个小组的频率分别是0.1,0.3,0.4,第一小组的频数是5.(I)求第四小组的频率和参加这次测试的学生人数;(II)在这次测试中
10、,问学生踢键子次数的中位数落在第几小组内?(m)在这次跳绳测试中,规定跳绳次数在110以上的为优秀,试估计该校此年级跳绳成绩的优秀率是多少?(I )由题意可知第四小组的频率为1-(0.1 + 03 + 0.4) = 0.25- 0.1 = 50参加这次测试的学生人数为:(n)由题意可知学生踢键子次数的中位数落在第三小组内;125-11025x 0.4+ 0.2 = 0,44所以估计该校此年级跳绳成绩的优秀率是44%(田)因为组距为25,而110落在第三小组,所以跳绳次数在110以上的频率为2E(本fg酎H4分)已知IW圆=102通左,右带个焦点分别为外是,上顶点助勺为正三角形且周长为6,(1)
11、求情园C的标厚方程及离心率(2)。为坐标原点,尸是直栽昂4上的一个动点,求|明|十忸0|的最小值,并求出此时点F的坐标.21 .解得:占=2/=J5,亡=卜,3分故C的方程为二十亡=15分 国心率=432直线耳达的方程为,=、氏>1>分 6分设点0关于置线用工对低的点为则也.石二7出尸口.231_二(爨立方程正蠲,可得分至g分,伊。|=/叫 伊玛|十典?| =卢玛任伊因三匹卜I。分| 玛|卡|产。|的最小值为|呼1f=J711分3-0直线烟的方程为尸=卷一(T-1)即,=一”0D口分由222所以此时照P的坐标为v?3T14分22.函数 f (x)=ax3+bx2 - 3x在点x=1处取得极大值为2.(1)求函数f(x)的解析式;(2)求函数f(x)在区间0 , 2上的最大值和最小值.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的极值.【分析】(1)求出函数的导数,根据f(1)=2,f'(1)=0,求出a,b的值,从而求出f(x)的解析式即可;(2)求出函数f(x)的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的最值即可.【解答】解:(1)求导f(x)=3ax2+2bx3,3=2由题意
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小学语文《观潮》教案设计
- 2025云浮市罗定市满塘镇社区工作者考试真题
- 2025台州市仙居县埠头镇社区工作者考试真题
- 2024哈佛大学性别差距和生成式 AI 的证据
- 药厂设备编程培训课件
- 布书在学前教育中的应用与讲解技巧
- 克雷伯杆菌肺炎护理措施
- 课程设计与评价环境教育
- 指南针科学课件
- 初中生物呼吸道对空气的处理 教案-2024-2025学年人教版生物七年级下册
- 水磨钻专项方水磨钻专项方案
- 我爱刷牙幼儿课件
- 职高英语高一试题及答案
- 2024-2025年第二学期一年级语文教学进度表
- 3.1《百合花》课件 统编版高一语文必修上册
- 会展营销学知到智慧树章节测试课后答案2024年秋上海旅游高等专科学校
- 主动脉球囊反搏术(IABP)护理
- 《关于加强中小学地方课程和校本课程建设与管理的意见》专题培训
- 2025年中考物理押题猜想卷(苏州卷)(全解全析)
- 《半导体行业发展历程》课件
- 新能源开发知识培训课件
评论
0/150
提交评论