版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、数学运算经典题解1】 剪绳子问题:例一:【息戎注:对折三次这条绳子就变成 2八3段,有7个拐点,对折n次就有2An段,拐点 有25-1个注意是对折,与平均折三次有本质区别】解析:切一刀变成25+1份,以后每多切一刀就增加 2An份,所以切了 6刀,就变成 2八3*6+仁49.因此针对【对折剪绳子问题】得到公式如下:对折n次,均匀剪了 m刀,共变成2An*m+1份,其中有25-1份【看拐点的个数】的长度是其他绳子长度的两倍。例二: 【变形题】将一根绳子连续对折三次,然后每隔一定长度剪一刀,共剪 6 刀。问这样操作后,剪成两种长度的绳子,较短的绳子比拟长的绳子多多少根?解析:一共剪成 49短,拐点
2、有 7个,因此有 7个长度是另一种长度两倍, 49-7*2=35例三:一根铁丝长2 0 0 0厘米,剪二种规格的小段,36厘米和19厘米的,不能有 剩余,问最少剪几次最多剪?【息戎解析】:200036=55.20200019=105 .5我们发现: 36n+19m=2000 n 和 m 都是整数。 从上面两个式子我们可以得到: 36 乘 以n小于55的数加上20是19的倍数。因为【余数的积】等于【积的余数】 17n+20是19可以看成【 19=17+2】的倍数 .n=10 符合条件的还有 29 48 【10 +19的倍数】 所以: 45+200019=45+20=65 . 最少要切成 65段需
3、要 64刀2】 不定值问题:例一:小明用 5天时间看完了一本 200页的故事书 .第二天看的页数比第一天多,第 三天看的页数是第一、二两天看的页数之和,第四天看的页数是第二、三两天看的页数 之和,第五天看的页数是第三、 四两天看的页数之和 .那么,小明第五天至少看了多少页 .? 解析:设小明第一天看了 a页,第二天看了 b页,那么前五天看的页数依次为:a, b, a+b, a+2b,2a+3b.上面各个数的和是 200,得到5a+7b=200.因为5a与200都是5的倍数,所以b是5的倍数.因为 b>a ,所以上式只有两组解 :b=20,a=12; b=25,a=5.将这两组解分别代入2
4、a+3b,得到第五天至少看了 84页.例二:国2007-51学校举办一次中国象棋比赛,有 10名同学参加,比赛采用单循环 赛制,每名同学都要与其他 9名同学比赛一局。比赛规那么,每局棋胜者得 2分,负者得 0 分,平局两人各得 1分,比赛结束后, 10名同学的得分各不相同,:1比赛第一名与第二名都是一局都没有输过;2前两名的得分总和比第三名多 20分;3第四名的得分与最后四名的得分和相等。那么,排名第五名的同学的得分是 。分分分分解析10名同学单循环比赛,共需比赛 C2io=45场,每人比赛9场。每场比赛无论 比赛结果如何,比照赛双方得分总奉献为 2 分假设双方打平的话,双方各得 1 分;假
5、设有一方获胜,那么胜方得2分,负方得0分,因此所有人总得分是 45X 2= 90分。根 据条件1,知道前两名之间的比赛是平局,第一名的成绩最多是2X 8+1 = 17分。因为他们得分各不相同,第二名的得分最多是 16分;根据条件 2,第三名的得分最多是 13分;那么第四名的得分最多是 12 分,第五名的得分最多是 11 分。根据条件 3,后 四名七至十名的得分和最多是 12 分。假设第五名得分缺乏 11 分,那么第五名得分最 多是10分,第六名的得分最多是9分,此时所有人的得分和W 17+16+13+12+10+9+12=89 V 90分,矛盾。假设不成立,即第五名的得分恰为11分。【息戎解析
6、】:设第三名为a,第四名为b,第五名为c第六名为d。10名同学单循环比赛就是每俩人干一场C21o=45,所以45场共90分。下面就是看看这个90分的分配。2a+20+2b+c+d=902(a+b)+c+d=70a+b 大于等于 c+d+4所以: 3(c+d)?62c>d, c=11 可以确定。因为考场上没有时间验证。只能直接去确定值。例三:【息戎解析】: 95*3-94*3 可以得到, A-D=3 可以排除 B 和 D 项例四 :五个人的体重之和是 428 斤,他们的体重都是整数 ,并且各不相同 .那么体重最轻的人 , 最重可能是 ( ) 斤34解析:4235=84.3 抛开3,先看中间
7、值是84的连续五个数82、83、84、85、86, 最轻的提高一斤,就需要 5 斤来提高整体 .3 可以忽略掉。例五: 现有鲜花 21 朵分给 5 人,假设每个人分得的鲜花数目各不相同,那么分得鲜花最多 的人至少分得朵鲜花。A7 B.8 C 、 9 D.103解析:215=41,展开23456看最高的,余数只能加到6上。余数、倍数、 约数问题:例一:【息戎解析】:先确定A的值,A是5、6、7的公倍数,其中最小公倍数是210,因为他 们的和不超过 400 只有 210符合。B:5X+5=210C:6x+6=210D:7X+7=210解出来加和便得到, 210+41+34+29=314例二:三个连
8、续自然数依次是 11、 9、 7的倍数,并且都在 500-1500之间,那么这三个数的和是?A 3129B 3132C 3135D 3140【息戎解析】:三个数的和一定 9的倍数,“弃九法各位数字加和看是否是 9 的倍数。例三:一个自然数 ,被7除余 2,被8除余3,被9除余 1,1000以内一共有多少个这样的自然 数有多少个?A 2B 3C 4D 5【息戎解析】:7n-5与8n-5的最小公倍数是56n-5可以化成56n+51,这个数与9n+1的最小公倍数可以写成: 504n+X ,在 1 000内只有 n=0、1 符合。所以有两个。【这里面X是一个大于51小于504的一个正整数,我们没有必要
9、求出这个 数来】例四: ?【息戎解析】:此题考查的是中国剩余定理。先找,7、8的最小公倍数,被 9除余 3;7、9的最小公倍数,被 8整出余 4;8、9的最小公倍数,被 7整出余 6的。569=6.2, 2*6=12 除以 9 余 3,56*6 符合同理可以找到:能被7, 8整除,被9除余3的数为566=336能被8, 9整除,被7除余6的数为72X3=216学习文档 仅供参考能被7, 9整除,被8除余4的数为63M=252804-504=300公式就是 :504n+300 最小值是 300.2 3 4 5 6 的最小公倍数是 60N=05 10 15 符合4】浓度问题例一:甲杯中有浓度为 1
10、7% 的溶液 400 克,乙杯中有浓度为 23% 的溶液 600 克。现在从 甲、乙两杯中取出相同总量的溶液,把从甲杯中取出的倒入乙杯中,把从乙杯中取出的 倒入甲杯中,使甲、乙两杯溶液的浓度相同。问现在两倍溶液的浓度是多少 ( )A.20% B.20.6% C.21.2% D.21.4% 解析:两杯混合后溶液是 1000,通过尾数法直接选 B。【转载天字一号】 盐水交换问题例二:有甲乙两杯含盐率不同的盐水,甲杯盐水重12 0克,乙杯盐水重8 0克.现在 从两杯倒出等量的盐水,分别交换倒入两杯中这样两杯新盐水的含盐率相同从每杯 中倒出的盐水是多少克?公式:交换量 =mn/(m+n)通过公式可以直
11、接得到例三: 某容器中装有盐水。老师让小李再倒入 5%的盐水 800 克,以配成 20%的盐水。 但小李却错误地倒入了 800 克水。老师发现后说,不要紧,你再将第三种盐水 400 克倒 入容器,就可以得到 20%的盐水了。那么第三种盐水的浓度时多少?A20% B、30% C、40% D、 50%【息戎解析】:拆补法解题。因为 800 清水与 400 克溶液混合,再把它们分成 800 克 5%的溶液和400克20%的溶液。800*5%+400*20%=120120400*100%=30%例四:有浓度为30%的溶液假设干,加了一定数量的水后稀释为 24%的溶液,如果再加 入同样多的水后,浓度将变
12、为多少?【息戎解析】:设中间量24%为100克。所以溶质为24克原有溶液:2430%=80克,所以加了 20克水,再加20克水溶液变成120克。例五【十字交叉法】:容器中有某种浓度的酒精,参加一杯水后,容器中的纯酒精含量为25%,再参加一杯纯酒精,容器中的纯酒精含量为 40%。问原来容器中有几杯酒精,浓度是多少?【息戎解析】:10015140=2560m得到:m=4 ,4-仁3有三杯,X25325=0X-251可以解出X的值&&&&&&&&&&&&&&&&&&
13、amp;&&&&&&&&&&&&&&&4】排列组合例一:用1,2,3,4,5这五个数字组成没有重复数字的自然数,从小到大顺序排列: 1,2, 3, 4, 5, 12,,54321其中,第206个数是A. 313 B. 12345 C.325 D. 371解析:p5 1+P52 +P5 3+P54=205所以选B例二【变形题】:用1, 2, 3, 4, 5这五个数字组成没有重复数字的自然数,从小到大顺 序排列:1,2, 3, 4,5,12,解析:p5 1+P52*2 +P5 3
14、*3 =225第226 一定是1.例三:五个人站成一排,甲乙站在一起最后的站法共有种.【息戎解析】:甲乙站到一起P2 2,然后全排P44 -捆绑法例四:五个人站成一排,甲乙不站在一起最后的站法共有种:【息戎解析】:三个人全排p3 3有四个空,p4 2-插孔法例四:三边长均为整数,且最大边长为100的三角形的个数为A2500 个B2550 个C2600 个D2650 个【息戎解析】:100以内共有100个数可以选择,以后每选择一边递减2,行程等差数列。100+2*502=2550例五:将14封信投入23个邮筒,有多少种不同的投法?【息戎解析】:每个封信有23中选择,共14封。所以是14个23相乘
15、23八14例六:8本不同的书,任选3本分给3个同学,每人一本,有多少种不同的分法?【息戎解析】:首先,C8 3然后p3 3【转载自天字一号】P33,我们来看第一个同学可以有 3种书选择,选择完成后,第2 个同学就只剩下2种选择的情况,最后一个同学没有选择。学习文档仅供参考【变形题】8本不同的书,任选3本分给3个同学,有多少种不同的分法?【息戎解析】:C8 3,然后3八3。例七:从4台甲型和5台乙型电视机中任意取出 3台,其中至少要有甲型和乙型电视机 各1台,那么不同的取法共有(A)140 种(B)84 种(C)70 种(D)35 种解析:C9 3- C43 -C53=70错位排列:D仁0 D2
16、=1 D3=2D4=9 D5=44例八:五个瓶子都贴了标签,其中恰好贴错了三个,那么贴错的可能情况有几种?息戎解析:C5 3 *2例九:2名同学分别到三个不同的路口进行车流量的调查,假设每个路口 4人,那么不同的分配方案共有C(4,12)C(4,8)C(4,4) _ 种【转自天字一号】【解析】每个路口都按次序考虑第一个路口是C12取4第二个路口是C8取4第三个路口是C4取4那么结果是C12取4XC8取4XC4取4可能到了这里有人会说 三条不同的路不是需要P33吗 其实不是这样的 在我们从12人 中任意抽取人数的时候,其实将这些分类情况已经包含了对不同路的情况的包含。如果再沖33那么是重复考虑了
17、如果这里不考虑路口的不同即都是相同路口 那么情况又不一样 因为我们在分配人数的时候考虑了路口的不同。所以最后要去除这种可能情况所以在上述结果的情况下要 ¥33 例十:在一张节目表中原有8个节目,假设保持原有节目的相对顺序不变,再增加三个 节目,求共有多少种安排方法?【转自天字一号】 先用一个节目去插9个空位,有P(9,1)种方法;再用另一个节目去插 10个空位,有P(10,1)种方法;用最后一个节目去插11个空位,有P(11,1)方法,由乘法 原理得:所有不同的添加方法为 P(9,1) >P(10,1) >P(11,1)=990种例一 :从10双不同颜色的手套中任取3只,
18、颜色各不相同,问有多少种取法?【息戎解析】:C10 3 *2八3=120*8=960先取出、例十二:从6双不同颜色的手套中任取4只,其中恰好有一双同色的取法有 。(A)240(B)180(C)120(D)60【息戎解析】:先取颜色六种颜色先去一种,这种就是一双,在从剩下五种颜色中取出两种来,再从这两种颜色中各取一只与完整的一双来搭配。C61*C52*2八2=240【变形题】从6不同颜色各2双的手套中任取 4只,其中恰好有一双同色的取法有。六种颜色选一种,这一种颜色有两种选择,C61 *C21再选两种颜色C52 *4八212*10*16=1920例十三:用0, 2,3,4, 5这五个数字,组成没
19、有重复数字的三位数,其中偶数共有A . 24 个 B. 30 个 C. 40 个 D. 60 个【息戎解析】:此题我们先做出全部没有重复数字的来,减去奇数的就是偶数的。C41*C41*C31-C21*C31*C31=30.首先,全部:百位只能安排 2345,先安排一个,十位安排剩下的四个,个位安排剩下的 三个。奇数:先安排个位,3和5,剩下4个,在安排百位,百位上不能安排 0所以只 能安排3个,剩下3个,取一个安排到十位上。例十四:八位同学出去野营,晚上他们在沙滩上玩游戏,游戏需要这八个同学围成两个四人的圆圈,请问一共有多少种方法?A720B900C1080D1260【息戎解析】:此题考查分组
20、问题,分成两组就是C84A22 ,再就是圆圈全排列,A33A33, 答案选D例十五:4个不同小球放入编号为1、2、3、4的四个盒子,那么恰有一个空盒的放法有 _ 种【息戎解析】:C42,把其中俩球捆到一起,放到4个盒子里面P43, C42*P43=6*4*3*2=144例十六:8块奶糖和另外3个不同品牌的水果糖要放到编号为 1 11的盒子里面,每个盒 子至少放1个,有多少种方法?【息戎解析】:方法一:先挑出8个空来安排八块奶糖,C11 8,剩下三个全排列P3 3. 方法二:直接安排3种奶糖,剩下的8个自然放到剩下的盒子里。就是 P11 3 两种方法都得990.伎球问题核心公式的方法徽为w回I自
21、己的方法数为60珅,向传给乙或者为方法数,与X第二讓近的整数仕是传绪门已的方法数丽个人传N次球,记X色匕1L,型与x愎接近的整数为传给6非自己的某人円的M 如上圖之中.沁最按近伸数®第二接近的整数是娥朋处例十七:某人去A BCDE五个城市旅游,第一天去 A城市,第七天到E城市。如果他今 天在某个城市,那么他第二天肯定会离开这个城市去另一个城市,那么他一共有多少种 旅游行程安排?A204B205C819D820【息戎解析】:首先确定,从第一天开始到第七天,有 6次转移,因为5个城市,因此, 底数是5-1,所以是4八6=4096,40965=819.2在这里我们想到“公务员精神第一选择给
22、 别人,题目去的不是 A城市,最接近819,因此选C,如果回到A城市就选820。【变形题】:某人去A BCDE五个城市旅游,第一天去 A城市,第七天到E城市。那么他 一共有多少种旅游行程安排?A204B3125C819D820解析:此题从底数入手,第二天有 5种选择,所以不需要减1【变形题】:某人去A BCDE五个城市旅游。如果他今天在某个城市,那么他第二天肯定会离开这个城市去另一个城市,共旅游七天。那么他一共有多少种旅游行程安排?【息戎解析】:答案是:5*4096。先设定其中一个城市,共有4八6种选择。共有5个城市。 要乘以5.【变形题】:某人去A BCDE五个城市旅游,第一天去 A城市,第
23、二天到只能去CDE城 市,第三天去A城市,第七天回到A城市。如果他今天在某个城市,那么他第二天肯定会 离开这个城市去另一个城市,那么他一共有多少种旅游行程安排?【息戎解析】:3*1*4*4*4*4第一接近给别人154不给A, 153给A.5】行程问题例一:甲乙两人同时从 A、B两地出发相向而行,甲到达 B地后立即往回走,回到 A 地后,又立即向B地走去;已到达A地后立即往回走,回到B地后,又立即向A地走去。 如此往复,行走的速度不变,假设两人第二次迎面相遇,地点距 A地500米,第四次迎 面相遇地点距B地700米,那么A、B两地的距离是多少?【息戎解析】:这是典型的两岸型相遇问题。 如果这个题
24、是第一次是距 A地500米,第二 次距B地700米我们可以用两岸型公式得出500*3-700=800,但是这里问的是 第二次和第四次,这个公式就不实用了。需要我们继 续推导。*条件:甲、乙两车分别同时从 A、B两地出发,各自到头即返回。假设其m小于n第m次相遇距A点是a千米,第n次相遇距B点式b千米,全程为s 那么甲乙两车两次分别共走了 2m-1和2n-1个全程,甲走了(m-1)s +a,乙走了 ms-a,同样 甲走了 ns-b,乙走了 (n-1)s+b,由于分别走的时间相同可以根据等量列等式:(m-1)s +a ms-a = ns -b(n-1)s+b化简可以得到:S= (2n-1)a +
25、2m-1b m+n-1同样我们来推导单岸型。条件:甲、乙两车分别同时从 A、B两地出发,各自到头即返回假设其m小于n,第m次相遇距A点是a千米,第n次相遇距A点式b千米,全程为s 那么甲乙两车两次分别共走了 2m-1和2n-1个全程,第一次甲走了(m-1)s +a,乙走了 ms-a, 同样甲走了 (n-1)s+b,乙走了 ns-b,由于分别走的时间相同m-1s+a ms-a =(n-1)s+b ns-b化简得到:s=(2n-1)a - 2m-1)b n-m因此此题我们代入已经推导出来的公式:7*500+3*7002+4-仁1120通过推导出来的公式我们还可以发现:(2n-1)a -2m-1)b
26、中2n-1、2m-1为全程的个数。追击问题:例二:一条街上,一个骑车人和一个步行人相向而行,骑车人的速度是步行人的3倍,每个隔10分钟有一辆公交车超过一个行人。每个隔 20分钟有一辆公交车超过一个骑车人,如果公交车从始发站每隔相同的时间发一辆车,那么间隔几分钟发一辆公交车?A 10 B 8 C 6 D 4解析:这到题的本质不是人与骑车人的相遇问题 ,而是公交车与人,公交车与骑车人的追 赶问题.因为发车间隔相同,公交车车速一样,所以两辆公交车的间距也一样.我们不妨 设两公交车的间距是 S,人的速度是V1,骑车人的速度是3V1,公交车的速度是V.假设第 一辆公交车超过人,那么据题意第二辆公交车超过
27、人是 10分钟后,而此时人与第二辆距离 就是S,所以的得到S=10(V-V1),同理依据骑车人与公交车的关系可得S=20(V-3V1),两个方程得V=5V1,间隔时间即T=S/V=40V1/5V1=8分钟例三:某人沿电车线路行走,每12分钟有一辆电车从后面追上,每4分钟有一辆电车迎面 而来.2个起点站的发车间隔相同,那么这个间隔是多少?【息戎解析】:此题直接套公式。时间间隔t=2*t1*t2 t1+t22*12*412+4 =6我们来推导下这个公式:根据路程差 二速度差*时间条件:每t1分钟有一辆电车从后面追上,每t2分钟有一辆电车迎面而来,路程间隔为S设速度电车为V1人的速度为V2,S=t1
28、(v1-v2)S=t2(v1+v2)两式合并得到:得到 V仁t1+t2v2 (t1-t2) t1+t2时间间隔 T=Sv=t1(v1-v2)v1代入化简得到 T=2t1t2t1+t2例四:从甲、乙两车站相对同时开出公车,此后两站每隔 8分钟再开出一辆,依次类推, 每辆车的车速相同且匀速,每辆车到达对方站都需 45分钟,现 有一乘客坐甲站开 出的第一辆车去乙站,问他在路上会遇到几辆从乙站开出的公共汽车?【息戎解析】:这个题我们要从总体上去考虑,假设路上有车那么每4分钟遇到一辆,454=111共遇到11两,但是因为乘客坐的是第一辆,所以要减去路程中的车。458=55,途中有5辆,11-5=6例五:
29、100名学生要到离校33千米处的少年宫活动.只有一辆能载 25人的汽车,为了 使全体学生尽快地到达目的地,他们决定采取步行与乘车相结合的方法.学生步行 速度为每小时5千米,汽车速度为每小时55千米.要保证全体学生都尽快到达目的地, 所需时间最少是?【息戎解析】:把100名学生分成4组,每组25人,每组步行3份路程,汽车代步一份。 将第一批人放到离终点3分路程,在离起点1份路程处接到第二那批人。此时汽车共行 走11份路程555=11,(11-1)2=5 总路程为1+5+3=9分路程。33/9=11/3(千米(11/3)*6/55=04(小时)(11/3)*3/5=2.2(小时)0.4+2.2=2
30、.6小时总结:汽车:人-12就是汽车占路程的分数。【变形题】:甲乙两个班从A地到B地,A、B两地相距100千米,甲班乘车先行,余下 的人步行,先坐车的人到途中某处下车步行,汽车返回接先步行的那局部人,全部人员 同时到达。甲班速度为8千米/小时,乙班速度为5,汽车速度为40千米/小时。问使 团体全部成员同时到达,B地需要多少时间?【息戎解析】:首先,甲a/./b乙设甲班步行为a,乙班步行为b,当接甲班时,汽车走的路程为 408=5 故为5a,同理为 8b 。所以 4a=7b,a=7b4所以甲班:汽车(空车):乙班=7b4:7b2:b=7:14:4此时我们总结出公式:甲班占路程份数 =汽车速度 乙
31、班-1 *2乙班占路程份数 =汽车速度甲班-1 *2空车占路程份数 =汽车速度甲班-1 *汽车速度 乙班 -13.5+1.8=5.3【变形题】:甲乙丙三个班从A地到B地,A、B两地相距100千米,甲班乘车先行,余 下的人步行,先坐车的人到途中某处下车步行,汽车返回接先步行的那局部人,全部人 员同时到达。甲班速度为 8 千米/小时,乙班速度为 5,丙班速度为 10,汽车速度为 40千米/小时。问使团体全部成员同时到达 ,B 地需要多少时间?B 4.43 D5【息戎解析】:我们先推导下。分别设甲乙丙分别走了a b c段距离,接甲乙丙空车汽车走的路程是 S1 S2 S3量:速度是v1 v2 v3,,汽车的速度为V,总路程为S,可以求出汽车与他们的速度 比: n1 n2 n3所以:当甲班走a时,汽车就走n1 *a,S1空车路程就是:(n 1-1)a2同理得出,乙班、丙班的 S2 S3空车路程为,n2-1b2和(n3-1)c2我们知道:总路程S=a+b+c+空车所以: S1=S2=S3(n1-1)a2=n2-1 b2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 货运代办业务员操作管理强化考核试卷含答案
- 汽车焊装生产线操作工安全演练知识考核试卷含答案
- 矿用重型卡车轮胎换修工操作管理强化考核试卷含答案
- 牙骨雕刻工安全素养竞赛考核试卷含答案
- 拖拉机锻造加工生产线操作调整工操作管理竞赛考核试卷含答案
- 职业培训师岗前技能评估考核试卷含答案
- 泥板画创作员安全培训效果测试考核试卷含答案
- 液晶显示器件制造工安全文化测试考核试卷含答案
- 木材保护与改性处理工冲突管理竞赛考核试卷含答案
- 铁氧体材料烧成工岗后考核试卷含答案
- 2026元旦主题班会:马年猜猜乐马年成语教学课件
- 2021年ISO13485-2016医疗器械质量管理体系内审记录
- 《上海人行道品质提升技术指南》
- 上海市闵行区2023-2024学年六年级上学期期末语文试题【含答案】
- 云南省楚雄州2023-2024学年上学期期末教育学业质量监测九年级历史试卷(含答案)
- GB/T 24608-2023滚动轴承及其商品零件检验规则
- 型材知识介绍课件
- 骨折石膏外固定技术
- 沪教版生物科学八年级上册重点知识点总结
- 架杆租赁合同
- 汽车美容装潢工(四级)职业资格考试题库-下(判断题汇总)
评论
0/150
提交评论