




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、6.2DefinitionsandexamplesDEFINITION6.LI(Eigenvaluc.cigenvector)LetAbeacomplexsquarematrix.ThenifisacomplexnumberandXanon-zerocomplexcolumnvectorsatisfyingAX=X,wecallXaneigenvectorA,whileiscalledaneigenvalueofA.WcalsosaythatofXisaneigenvectorcorrespondingtotheeigenvalueSointheaboveexampleHandarceigen
2、vectorscorrespondingto)and2,respectively.WcshallgiveanalgorithmwhichstartsfromtheeigenvaluesofA=hbandconstructsarotationmatrixAsuchthatPAPisdiagonal.Asnotedabove,ifisaneigenvalueofannxnmatrixA,withcorrespondingeigenvectorX9then(A-In)X=0,withXH0,sodet(A一/“)=0andthereareatmostndistincteigenvaluesofA.C
3、onverselyifdet(A一/)=0.then(A-/n)X=0hasanon-trivialsolutionXand50, isaneigenvalueofAwithXacorrespondingeigenvector.DEFINITION6.L2(CharacteristicpolynomiaLequation)Thepolynomialdet(A-In)iscalledthecharacteristicpolynomialofAandisoftendenotedbychA().Theequationdet(A一/)=0iscalledthecharacteristicequatio
4、nofA.HencetheeigenvaluesofAarctherootsofthecharacteristicpolynomialofA.a加Fora2x2matrixA=,itiseasilyverifiedthatthecharacteristicpolynomialis(traceA)+detA,wheretraceA=a+disthesumofthediagonalelementsofA.2nEXAMPLE6.2.1FindtheeigenvaluesofA=Iandfindalleigen-vectors.12)Solution.Thecharacteristicequation
5、ofAis2-4+3=0,or(D(-3)=0.Hence=1or3.Theeigenvectorequation(A-In)X=0reducestoor2-1nr2-(2-)x+y=Ox+(2-)y=0Taking=1givesx+y=Ox+y=Owhichhassolutionx=-y,yarbitrary.Consequentlytheeigenvectorscorrespondingto),、=1arethevectorsII,with.0.9Taking=3gives-x+y=0Jxy=0.whichhassolutionx=-y,yarbitrary.Consequentlythe
6、eigenvectorscorre-自spendingto=3arcthevectorsII,withyW0.J凶Ournextresulthaswideapplicability:THEOREM6.2.1LetAbea2x2matrixhavingdistincteigenvalues】and2andcorrespondingeigenvectorsandX2.LetPbethematrixwhosecolumnsareandX2,respectively.ThenPisnon-singularand012Proof.SupposeAX1=aandAX2=22-Wcshowthatthesy
7、stemofhomogeneousequationsxX+yX2=0hasonlythetrivialsolution.Thenbytheorem2.5.10thematrixP=x/4isnonsingular.SoassumexX+yX2=0.(6.3)ThenA(xX+yX2)=AO=0,sox(AX)+y(AX2)=0.HencexXx+=0.(6.4)Multiplyingequation6.3by1andsubtractingfromequation6.4gives"WO.Hencey=O,as(2-J0andX2W0,Thenfromequation6.3,xX,=0a
8、ndhencex=0.ThentheequationsAX=andAX2=2X2giveAP=Ax/xi=Avi/Ac=xi/X2十.1_尸_1.17.1.J2nEXAMPLE6.2.2LetA=bethematrixofexample6.2.1.Thenarceigenvectorscorrespondingtoeigenvaluesrioi1and3,respectively.HenceifP=wehavePAP=Therearetwoimmediateapplicationsoftheorem6.1.1.ThefirstistothecalculationofAn:IfLAP=diag(
9、,).thenA=Pdiag(,)Pand121,Thesecondapplicationistosolvingasystemoflineardifferentialequationsdx,dy,=ax+bx=xc+dxdtdtJb-whereA=isamatrixofrealorcomplexnumbersandxandycdarefunctionsoft.ThesystemcanbewritteninmatrixformasX=AX,dxIY卜Ie=/Iyl_lLJUiWemakethesubstitutionX=PY,where丫=ThenxandyarcalsofunctionsE11
10、ofrand=,=AX=(P-AP)Y=Fi0y.XPY02An=(Pdiag(-l,-2)piy=P"吆(一1),(一2)kr:张力'L14JLJLHence=(-1J1=1311oir4-314_l|_033x24-3114x2"_|_-l1_4-3x2-3+3x244x23+4x2Tosolvethedifferentialequationsystem,makethesubstitutionX=PY.Thenx=X+3y,y=x,+4.Thesystemthenbecomes''一"A|sox=x(0)6一andy=y(0)2f.No
11、w.ii兑=-2yP七加2刊;3U%"Iso?=75and凹=2户,HenceLLLx=71/+3(6产)=一11,+18产,y=-11/+4(6«-)=一15+24e-2/Foramorecomplicatedexamplewesolveasystemofinhomogeneousrecurrencerelations.EXAMPLE6.2.4Solvethesystemofrecurrencerelations%=2x-另用=一与+2%+2giventhatx0=0and=0.Solution.ThesystemcanbewritteninmatrixformasA=W
12、here2-1L-i2JandXm=4X+8,-11-2匕Itisthenaneasyinductiontoprovethat(6.5)X/A“X0+(41+A+QB.Alsoitiseasytoverifybytheeigenvaluemethodthatll+31-3113A=_=_+5|J31+322nn17IwhereU=IandV=.Hence11-11.n(3"-141-3+1)A+人=-U+V.-22Thenequation6.5gives1301(3-1)F-11七二(产/7+(产+,mJIm_whichsimplifiestoxn'2+1-3,->&g
13、t;|_%12一5-3%_|Hencex=(In+1-3")/and);=(2-5+3"y4.REMARK6.2.1If(A-Af1existed(thatis,ifdet(A-A)W0,orequivalently,if1isnotaneigenvalueofA),thenwecouldhaveusedtheformula+A+4=(一A)(A一,2尸.(6.6)HowevertheeigenvaluesofAarc1and3intheaboveproblem,soformula6.6cannotbeusedthere.Ourdiscussionofeigenvalues
14、andeigenvectorshasbeenlimitedto2x2matrices.Thediscussionismorecomplicatedformatricesofsizegreaterthantwoandisbestlefttoasecondcourseinlinearalgebra.Neverthelessthefollowingresultisausefulgeneralizationoftheorem6.2.1.Thereaderisreferredto28,page350foraproof.THEOREM6.2.2LetAAbeannxnmatrixhavingdistinc
15、teigenvalues,andcorrespondingeigenvectorsX,LetPbethematrixwhosecolumnsarerespectivelyXi,ThenPisnoih-singularandfi0001P-lAP=02°° |o0JAnotherusefulresultwhichcoversthecasewheretherearemultipleeigenvaluesisthefollowing(Thereaderisreferredto28,pages351-352foraproof):THEOREM6.1.3SupposethecharacteristicpolynomialofAhasthefactorizationwherec>,qarethedistincteigenvaluesofA.Supposethatfori=1,wchavenullityq/“一
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二年级心理健康教育心理素质拓展计划
- 经典诵读与语言艺术培训计划
- 人教版三年级数学上册学习计划
- 2024-2025企业员工培训与发展计划
- 文化产业园2025年产业集聚发展与服务体系整合策略报告
- 宠物宠物食品市场细分需求分析:2025年宠物食品创新趋势报告
- 数字艺术市场2025年交易平台艺术品市场分析报告:市场挑战
- 2025年细胞治疗产品临床试验与审批流程合规性研究报告
- 手术室工作流程培训计划
- 快消品包装2025:绿色包装与产品生命周期评价体系构建报告
- 招聘社工考试试题及答案
- 砖和砌块材料试题及答案
- TCCEAS001-2022建设项目工程总承包计价规范
- 输变电工程施工质量验收统一表式附件4:电缆工程填写示例
- 福州地铁考试试题及答案
- 钢材授权合同协议
- 小学生朗读指导课件
- DB32-T 5079-2025 城镇供水水表安装及维护技术规程
- 种畜禽场管理制度类
- 雷雨剧本文件完整版电子书下载
- 外墙保温施工考核试卷
评论
0/150
提交评论