BO approximation波近似_第1页
BO approximation波近似_第2页
BO approximation波近似_第3页
BO approximation波近似_第4页
BO approximation波近似_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、Fundamentals of DFTR. WentzcovitchU of MinnesotaVLab Tutorial Hohemberg-Kohn and Kohn-Sham theorems Self-consistency cycle Extensions of DFT BO approximation IrrintVeT - Basic equations for interacting electrons and nuclei Ions (RI ) + electrons (ri )2222222,1222IJIioniIiiji IIi IeiIIIJijZ Z eZ eeHm

2、rRMRRrr inttotextion ionion ionHTVVEHE IRR ionTextVion ionE22( )2ionItotIIHHRM |eleltotion ionelelHEREThis is the quantity calculatedby total energy codes.PseudopotentialsNucleusCore electronsValence electronsV(r)1.00.50.0-0.50Radial distance (a.u.)rRl (r)123453s orbital of SiReal atomPseudoatomrIon

3、 potentialPseudopotential1/2 Bond lengthBO approximation Born-Oppenheimer approximation (1927) Ions (RI ) + electrons (ri ) 2222( )2totIIIERRRMR 2( )2IJtotIJIJZ ZeERE RRR( )totIIERFR ( )totlmlmER 22( )1det0totIJIJERR RM M IRR Molecular dynamicsLattice dynamicsforcesstressesphononsElectronic Density

4、Functional Theory (DFT) (T = 0 K) Hohemberg and Kohn (1964). Exact theory of many-body systems. 3int( )( ) ( )|eleltotion ionextion ionelelHERETVd rVr n rEDFT1Theorem I: For any system of interacting particles in an external potential Vext(r), the potential Vext(r) is determined uniquely, except for

5、 a constant, by the ground state electronic density n0(r).Theorem II: A universal functional for the energy En in terms of the density n(r) can be defined, valid for any external potential Vext(r). For any particular Vext(r), the exact ground state energy is the global minimum value of this function

6、al, and the density n(r), that minimizes the functional is the ground state density n0(r). Proof of theorem I Assume Vext(1)(r) and Vext(2)(r) differ by more than a constant and produce the same n(r). Vext(1)(r) and Vext(2)(r) produce H(1) and H(2) , which have different ground state wavefunctions,

7、(1) and (2) which are hypothesized to have the same charge density n(r). It follows that Then andAdding both which is an absurd! (1)(1)(1)(1)(2)(1)(2)EHH (2)(1)(2)(2)(2)(2)(2)(1)(2)(2)HHHH (2)3(1)(2)0( )( )( )extextEd r VrVrn r(1)(2)3(1)(2)0( )( )( )extextEEd r VrVrnr(2)(1)3(2)(1)0( )( )( )extextEEd

8、 r VrVrnr(2)(1)(1)(2)EEEEHohemberg and Kohn, Phys. Rev. 136, B864 (1964)Proof of theorem II Each Vext(r) has its (R) and n(r). Therefore the energy Eel(r) can be viewed as a functional of the density. Consider and a different n(2)(r) corresponding to a different It follows that (1)(1)(1)(1)(2)(1)(2)

9、EHH (1)(1)(1)(1)(1)HKEEnH int ( ) ( )HKextion ionEnT nEndrVr n rE ( ) ( )HKextion ionFndrVr n rE(1)( )extVr(2)( )extVrHohemberg and Kohn, Phys. Rev. 136, B864 (1964)The Kohn-Sham Ansatz 3int ( ) ( )extE nT nEnd rVr n r ( ) ( ) HartreeextxcE nT nEndrVr n rEnReplacing one problem with another(auxiliar

10、y and tractable non-interacting system) Kohn and Sham(1965) Hohemberg-Kohn functional:How to find n?iiipmnT221)()()(rrrniii ( ) ( )( )Hartreedr n r n rErrrKohn and Sham, Phys. Rev. 140, A1133 (1965) Kohn-Sham equations: (one electron equation) )()()()()(222rrrVrVrVmiiixcHartreeext)()()(rrrndrrnnErVH

11、artreeHartree)()(rnnErVxcxcWith is as Lagrange multipliers associated with the orthonormalization constraint and anddft2Minimizing En expressed in terms of the non-interacting system w.r.t. s, while constraining s to be orthogonal:,|iji j Exchange correlation energy and potential: By separating out

12、the independent particle kinetic energy and the long range Hartree term, the remaining exchange correlation functional Excn can reasonably be approximated as a local or nearly local functional of the density. ( , )( ),( )( )( )xcxcxcxcEnn rVrnrn rn rn rwithand Local density approximation (LDA) uses

13、xcn calculagted exactly for the homogeneous electron system ( )( , )xcxcEndrn rn rQuantum Monte Carlo by Ceperley and Alder, 1980 Generalized gradient approximation (GGA) includes density gradients in xcn,n Meaning of the eigenvalues and eigenfunctions:Eigenvalues and eigenfunctions have only mathem

14、atical meaning in the KS approach. However, they are useful quantities and often have good correspondence to experimental excitation energies and real charge densities. There is, however, one important formal identityThese eigenvalues and eigenfunctions are used for more accurate calculations of tot

15、al energies and excitation energy.The Hohemberg-Kohn-Sham functional concerns only ground state properties.The Kohn-Sham equations must be solved self-consistentlyiidEdnSelf consistency cycle0( )innr0inV n( )( )( )( )22( )( )( )( )( )2iiiiininoutoutextHartreexciiiVrVrVrrrm ( )ioutnrioutV n1iiiininou

16、tV nV nV n1ii ( )( )iioutinnrnruntilExtensions of the HKS functional Spin density functional theory The HK theorem can be generalized to several types of particles. The most important example is given by spin polarized systems. ( )( )( )n rn rn r( )( )( )s rn rn r , HKEEn s22( , )( , )( )( )( )2extH

17、artreexciiiVr sVr sVrrrm Finite T and ensemble density functional theory The HK theorem has been generalized to finite temperatures. This is the Mermin functional. This is an even stronger generalization of density functional. , , HKelF n TEn TT Sln (1)lnBiiiiSkfff 11 expiiBelfk T( )( )( )iiiin rfrr

18、D. Mermim, Phys. Rev. 137, A1441 (1965)Wentzcovitch, Martins, Allen, PRB 1991Use of the Mermin functional is recommended in the study of metals. Even at 300 K, statesabove the Fermi level are partially occupied.It helps tremendously one to achieve self-consistency. (It stops electrons from “jumping” from occupied to empty states in one step of the cycle to the next.)This was a s

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论