常微分方程:1-3齐次方程_第1页
常微分方程:1-3齐次方程_第2页
常微分方程:1-3齐次方程_第3页
常微分方程:1-3齐次方程_第4页
常微分方程:1-3齐次方程_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、1.3 齐次方程.,)(222111222111为任意常数其中的方程形如cbacbacybxacybxafdxdyII( )(dyyIgdxx形如)的方程(I) 形如)5 . 2()(xygdxdy.)(的连续函数是这里uug方程称为齐次方程,求解方法:方程化为引入新变量作变量代换,)(10 xyu ,)(xuugdxdu)(udxduxdxdy这里由于解以上的变量分离方程02.30变量还原例4求解方程)0(2xyxydxdyx解:方程变形为)0(2xxyxydxdy这是齐次方程,代入得令xyu uu 2即udxdux2将变量分离后得xdxudu2udxdux两边积分得:cxu)ln(即为任意

2、常数ccxcxu, 0)ln(,)(ln(2代入原来变量,得原方程的通解为,0)ln(, 00)ln(,)ln(2cxcxcxxyxdxudu2例6求下面初值问题的解0) 1 (,)(22yxdydxyxy解:方程变形为2)(1xyxydxdy这是齐次方程,代入方程得令xyu 21 udxdux将变量分离后得xdxudu21两边积分得:cxuulnln1ln2整理后得cxuu21变量还原得cxxyxy2)(1. 1, 0) 1 (cy可定出最后由初始条件故初值问题的解为) 1(212xyxdxudu21(II) 形如,222111cybxacybxadxdy.,222111为常数这里cbacb

3、a的方程可经过变量变换化为变量分离方程.分三种情况讨论的情形0121 cc)(2211xygxybaxybaybxaybxadxdy2211为齐次方程,由(I)可化为变量分离方程.的情形022121bbaa则方程可改写成设,2121kbbaa222111cybxacybxadxdy则方程化为令,22ybxaudxdu)(22ybxaf222122)(cybxacybxak)(22ufba dxdyba22这就是变量分离方程不同时为零的情形与且21212103ccbbaa,00222111cybxacybxa则).0 , 0(),(,解以上方程组得交点平面两条相交的直线代表xy作变量代换(坐标变

4、换),yYxX则方程化为YbXaYbXadXdY2211为 (1)的情形,可化为变量分离方程求解.解的步骤:,0012221110cybxacybxa解方程组,yx得解方程化为作变换,20yYxXYbXaYbXadXdY2211)(XYg离方程将以上方程化为变量分再经变换,30XYu 求解04变量还原05例7求微分方程31yxyxdxdy的通解.解:解方程组0301yxyx, 2, 1yx得代入方程得令2, 1yYxXYXYXdXdY得令,XYu uudXduX112XYXY11将变量分离后得XdXuduu21)1 (两边积分得:cXuuln)1ln(21arctan2变量还原并整理后得原方程

5、的通解为.)2() 1(ln12arctan22cyxxy注:上述解题方法和步骤适用于更一般的方程类型.)()(2211222111XYgYbXaYbXafdXdYcybxacybxafdxdy此外,诸如)(cbyaxfdxdy0)()(dyxyxgdxxyyf)(2xyfdxdyx)(2xyxfdxdycbyaxuxyu 2xyu xyu 以及0)(,()(,(ydxxdyyxNydyxdxyxM.,),(变量分离方程均可适当变量变换化为些类型的方程等一次数可以不相同的齐次函数为其中yxNM例8求微分方程0)()(22dyyxxdxxyy的通解.解:,xyu 令ydxxdydu则代入方程并整

6、理得0)(1 ()1 (udxxduudxuu即0)1 (22duuxdxu分离变量后得xdxduuu212两边积分得cxuu2lnln1变量还原得通解为.ln1cyxxy二、应用举例二、应用举例例8、雪球的融化 设雪球在融化时体积的变化率与表面积成比例,且在融化过程中它始终为球体,该雪球在开始时的半径为6cm,经过2小时后,其半径缩小为3cm,求雪球的体积随时间变化的关系。解:则表面积为雪球的体积为设在时刻),(),(tstvt)()(tksdttdv根据球体的体积和表面积的关系得)(3)4()(323231tvts再利用题中条件得引入新常数,3)4(3231k3232313)4(vkdtdv36)2(,288)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论