




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、LNG(液化天然气)已成为目前无法使用管输天然气供气城市的主要气源或过渡气源, 也是许多使用管输天然气供气城市的补充气源或调峰气源。LNG气化站凭借其建设周期短以及能迅速满足用气市场需求的优势,已逐渐在我国东南沿海众多经济发达、 能源紧缺的中小城市建成,成为永久供气设施或管输天然气到达前的过渡供气设施。 国内LNG供气技术正处于发展和完善阶段,本文拟以近年东南沿海建设的部分 LNG 气化站为例,对其工艺流程、设计与运行管理进行探讨。1LNG气化站工艺流程1 . 1LNG卸车工艺LNG通过公路梢车或罐式集装箱车从LNG液化工厂运抵用气城市LNG气化站, 利用梢车上的空温式升压气化器对梢车储罐进行
2、升压 (或通过站内设置的卸车增压气 化器对罐式集装箱车进行升压),使梢车与LNG储罐之间形成一定的压差,利用此压 差将梢车中的LNG卸入气化站储罐内。卸车结束时,通过卸车台气相管道回收梢车 中的气相天然气。卸车时,为防止LNG储罐内压力升高而影响卸车速度,当梢车中的 LNG温度 低于储罐中LNG的温度时,采用上进液方式。梢车中的低温 LNG通过储罐上进液 管喷嘴以喷淋状态进入储罐,将部分气体冷却为液体而降低罐内压力,使卸车得以 顺利进行。若梢车中的LNG温度高于储罐中LNG的温度时,采用下进液方式,高 温LNG由下进液口进入储罐,与罐内低温 LNG混合而降温,避免高温LNG由上进 液口进入罐内
3、蒸发而升高罐内压力导致卸车困难。实际操作中,由于目前LNG气源地距用气城市较远,长途运输到达用气城市时,梢车内的LNG温度通常高于气化站储罐中LNG的温度,只能采用下进液方式。所以除首次充装LNG时采用上进液方式外,正常卸梢车时基本都采用下进液方式。为防止卸车时急冷产生较大的温差应力损坏管道或影响卸车速度,每次卸车前都应当用储罐中的LNG对卸车管道进行预冷。同时应防止快速开启或关闭阀门使LNG的流速突然改变而产生液击损坏管道。1 . 2LNG气化站流程与储罐自动增压LNG气化站流程LNG气化站的工艺流程见图1。图1城市LNG气化站工艺流程储罐自动增压与LNG气化靠压力推动,LNG从储罐流向空温
4、式气化器,气化为气态天然气后供应用户。随着储罐内LNG的流出,罐内压力不断降低,LNG出罐速度逐渐变慢直至停止。因 此,正常供气操作中必须不断向储罐补充气体,将罐内压力维持在一定范围内,才 能使LNG气化过程持续下去。储罐的增压是利用自动增压调节阀和自增压空温式气 化器实现的。当储罐内压力低于自动增压阀的设定开启值时,自动增压阀打开,储 罐内LNG靠液位差流入自增压空温式气化器(自增压空温式气化器的安装高度应低 于储罐的最低液位),在自增压空温式气化器中LNG经过与空气换热气化成气态天然 气,然后气态天然气流入储罐内,将储罐内压力升至所需的工作压力。利用该压力 将储罐内LNG送至空温式气化器气
5、化,然后对气化后的天然气进行调压 (通常调至 0. 4MPa)、计量、加臭后,送入城市中压输配管网为用户供气。在夏季空温式气化 器天然气出口温度可达15 C,直接进管网使用。在冬季或雨季,气化器气化效率大 大降低,尤其是在寒冷的北方,冬季时气化器出口天然气的温度 (比环境温度低约 10 C)远低于0c而成为低温天然气。为防止低温天然气直接进入城市中压管网导致 管道阀门等设施产生低温脆裂,也为防止低温天然气密度大而产生过大的供销差, 气化后的天然气需再经水浴式天然气加热器将其温度升到10C,然后再送入城市输配管网。通常设置两组以上空温式气化器组,相互切换使用。当一组使用时间过长,气 化器结霜严重
6、,导致气化器气化效率降低,出口温度达不到要求时,人工 (或自动或 定时)切换到另一组使用,本组进行自然化霜备用。在自增压过程中随着气态天然气的不断流入,储罐的压力不断升高,当压力升 高到自动增压调节阀的关闭压力(比设定的开启压力约高10%)时自动增压阀关闭,增 压过程结束。随着气化过程的持续进行,当储罐内压力又低于增压阀设定的开启压 力时,自动增压阀打开,开始新一轮增压。2LNG气化站工艺设计2.1设计决定项目的经济效益当确定了项目的建设方案后,要采用先进适用的 LNG供气流程、安全可靠地向 用户供气、合理降低工程造价、提高项目的经济效益,关键在于工程设计 1。据西 方国家分析,不到建设工程全
7、寿命费用 1 %的设计费对工程造价的影响度占75%以 上,设计质量对整个建设工程的效益至关重要。影响LNG气化站造价的主要因素有设备选型(根据供气规模、工艺流程等确定卜 总图设计(总平面布置、占地面积、地形地貌、消防要求等 卜自控方案(主要是仪表 选型)。通常,工程直接费约占项目总造价的 70%,设备费又占工程直接费的48% 50%,设备费中主要是LNG储罐的费用。.2气化站设计标准至今我国尚无LNG的专用设计标准,在LNG气化站设计时,常采用的设计规 范为:GB5002893城镇燃气设计规范(2002年版)、GBJ16 87建筑设计防 火规范(2001年版)、GB50183 -2004石油天
8、然气工程设计防火规范、美国 NFPA-59A液化天然气生产、储存和装卸标准。其中GB50183 -2004石油天 然气工程设计防火规范是由中石油参照和套用美国 NFPA 59A标准起草的,许多 内容和数据来自NFPA 59A标准。由于NF-PA 59A标准消防要求高,导致工程 造价高,目前难以在国内实施。目前国内 LNG气化站设计基本参照GB50028 93 城镇燃气设计规范(2002年版)设计,实践证明安全可行。2. 3LNG储罐的设计储罐是LNG气化站的主要设备,占有较大的造价比例,应高度重视储罐设计。2. 3. 1LNG储罐结构设计LNG储罐按结构形式可分为地下储罐、地上金属储罐和金属/
9、预应力混凝土储罐3类。地上LNG储罐又分为金属子母储罐和金属单罐 2种。金属子母储罐是由3只 以上子罐并列组装在一个大型母罐(即外罐)之中,子罐通常为立式圆筒形,母罐为立 式平底拱盖圆筒形。子母罐多用于天然气液化工厂。城市 LNG气化站的储罐通常采 用立式双层金属单罐,其内部结构类似于直立的暖瓶,内罐支撑于外罐上,内外罐 之间是真空粉末绝热层。储罐容积有 50m3和100m3 ,多采用100m3储罐。对于100m3立式储罐,其内罐内径为3000mm ,外罐内径为3200mm ,罐体加 支座总高度为17100mm,储罐几何容积为105. 28m3。2. 3. 2设计压力与计算压力的确定目前绝大部
10、分100m3立式LNG储罐的最高工作压力为0. 8MPa。按照 GB150 -1998钢制压力容器的规定,当储罐的最高工作压力为0. 8MPa时,可取设计压力为0. 84MPa。储罐的充装系数为0. 95,内罐充装LNG后的液柱净 压力为0. 062MPa ,内外罐之间绝对压力为 5Pa ,则内罐的计算压力为1 . 01MPa。外罐的主要作用是以吊挂式或支撑式固定内罐与绝热材料,同时与内罐形成高 真空绝热层。作用在外罐上的荷载主要为内罐和介质的重力荷载以及绝热层的真空 负压。所以外罐为外压容器,设计压力为-0. 1MPa。2. 3. 3100m3LNG 储罐的选材正常操作时LNG储罐的工作温度
11、为-162. 3C,第一次投用前要用-196 C的液氮对储罐进行预冷2、3,则储罐的设计温度为-196 Co内罐既要承受介质的工作压力,又要承受LNG的低温,要求内罐材料必须具有良好的低温综合机械性能,尤其 要具有良好的低温韧性,因此内罐材料采用 0Crl8Ni9 ,相当于ASME(美国机械工程 师协会)标准的304。根据内罐的计算压力和所选材料,内罐的计算厚度和设计厚度分别为 11. 1mm 和12. 0mm。作为常温外压容器,外罐材料选用低合金容器钢 16MnR,其设计厚 度为 10. 0mm。2. 3. 4接管设计开设在储罐内罐上的接管口有:上进液口、下进液口、出液口、气相口、测满 口、
12、上液位计口、下液位计口、工艺人孔8个接管口。内罐上的接管材质都为0Cr18Ni9为便于定期测量真空度和抽真空,在外罐下封头上开设有抽真空口(抽完真空后该管口被封闭)。为防止真空失效和内罐介质漏入外罐,在外罐上封头设置防爆装置。 2. 3. 5液位测量装置设计为防止储罐内LNG充装过量或运行中罐内LNG太少危及储罐和工艺系统安全, 在储罐上分别设置测满口与差压式液位计两套独立液位测量装置4,其灵敏度与可靠性对LNG储罐的安全至关重要。在向储罐充装 LNG时,通过差压式液位计所显 示的静压力读数,可从静压力与充装质量对照表上直观方便地读出罐内LNG的液面高度、体积和质量。当达到充装上限时, LNG
13、液体会从测满口溢出,提醒操作人员 手动切断进料。储罐自控系统还设有高限报警 (充装量为罐容的85%)、紧急切断(充 装量为罐容的95%)、低限报警(剩余LNG量为罐容的10%)。2. 3. 6绝热层设计LNG储罐的绝热层有以下3种形式:高真空多层缠绕式绝热层。多用于 LNG梢车和罐式集装箱车。正压堆积绝热层。这种绝热方式是将绝热材料堆积在内外罐之间的夹层中, 夹层通氮气,通常绝热层较厚。广泛应用于大中型LNG储罐和储梢,例如立式金属LNG子母储罐。真空粉末绝热层。常用的单罐公称容积为 100m3和50m3的圆筒形双金属 LNG储罐通常采用这种绝热方式。在 LNG储罐内外罐之间的夹层中填充粉末(
14、珠光 砂),然后将该夹层抽成高真空。通常用蒸发率来衡量储罐的绝热性能。目前国产LNG 储罐的日静态蒸发率体积分数 <0. 3%。2.3. 7LNG储罐总容量储罐总容量通常按储存3d高峰月平均日用气量确定。同时还应考虑气源点的个 数、气源厂检修时间、气源运输周期、用户用气波动情况等因素。对气源的要求是 不少于2个供气点。若只有1个供气点,则储罐总容量还要考虑气源厂检修时能保 证正常供气。2. 4BOG缓冲罐对于调峰型LNG气化站,为了回收非调峰期接卸梢车的余气和储罐中的 BOG(BoilOffGas ,蒸发气体),或对于天然气混气站为了均匀混气,常在 BOG加热 器的出口增设BOG缓冲罐,
15、其容量按回收梢车余气量设置。2 . 5气化器、加热器选型设计2.5.1储罐增压气化器按100m3的LNG储罐装满90m3的LNG后,在30min内将10m3气相空间的 压力由卸车状态的0. 4MPa升压至工作状态的0. 6MPa进行计算。据计算结果, 每台储罐选用1台气化量为200m3/h的空温式气化器为储罐增压,LNG进增压气化 器的温度为-162 . 3C ,气态天然气出增压气化器的温度为-145 C。设计多采用1台LNG储罐带1台增压气化器。也可多台储罐共用1台或1组气 化器增压,通过阀门切换,可简化流程,减少设备,降低造价2. 5. 2卸车增压气化器由于LNG集装箱罐车上不配备增压装置
16、,因此站内设置气化量为300m3/h的卸 车增压气化器,将罐车压力增至 0. 6MPa。LNG进气化器温度为-162. 3C,气态 天然气出气化器温度为-145 C。2.5. 3BOG加热器由于站内BOG发生量最大的是回收梢车卸车后的气相天然气,故 BOG空温式 加热器的设计能力按此进行计算,回收梢车卸车后的气相天然气的时间按 30min计。 以1台40m3的梢车压力从0. 6MPa降至0. 3MPa为例,计算出所需BOG空温 式气化器的能力为240m3/h。一般根据气化站可同时接卸梢车的数量选用BOG空温式加热器。通常BOG加热器的加热能力为5001000m3/h。在冬季使用水浴式天 然气加
17、热器时,将BOG用作热水锅炉的燃料,其余季节送入城市输配管网。2. 5. 4空温式气化器空温式气化器是LNG气化站向城市供气的主要气化设施。气化器的气化能力按 高峰小时用气量确定,并留有一定的余量,通常按高峰小时用气量的1. 31. 5倍确定。单台气化器的气化能力按 2000m3/h计算,24台为一组,设计上配置23 组,相互切换使用。2. 5. 5水浴式天然气加热器当环境温度较低,空温式气化器出口气态天然气温度低于 5c时,在空温式气化 器后串联水浴式天然气加热器,对气化后的天然气进行加热 5、6。加热器的加热能 力按高峰小时用气量的1. 31. 5倍确定。2.5.6安全放散气体(EAG)加
18、热器LNG是以甲烷为主的液态混合物,常压下的沸点温度为-161 . 5C,常压下储存 温度为-162. 3C,密度约430kg/m3。当LNG气化为气态天然气时,其临界浮力温 度为-107 C。当气态天然气温度高于-107 C时,气态天然气比空气轻,将从泄漏处上升飘走。当气态天然气温度低于-107 C时,气态天然气比空气重,低温气态天然 气会向下积聚,与空气形成可燃性爆炸物。为了防止安全阀放空的低温气态天然气 向下积聚形成爆炸性混合物,设置 1台空温式安全放散气体加热器,放散气体先通 过该加热器加热,使其密度小于空气,然后再引入高空放散。EAG空温式加热器设备能力按100m3储罐的最大安全放散
19、量进行计算。经计算, 100m3储罐的安全放散量为500m3/h ,设计中选择气化量为500m3/h的空温式加热 器1台。进加热器气体温度取-145 C,出加热器气体温度取-15 C。对于南方不设EAG加热装置的LNG气化站,为了防止安全阀起跳后放出的低 温LNG气液混合物冷灼伤操作人员,应将单个安全阀放散管和储罐放散管接入集中 放散总管放散。2 . 6调压、计量与加臭装置根据LNG气化站的规模选择调压装置。通常设置 2路调压装置,调压器选用带 指挥器、超压切断的自力式调压器。计量采用涡轮流量计。加臭剂采用四氢曝吩,加臭以隔膜式计量泵为动力,根 据流量信号将加臭剂注入燃气管道中。2. 7阀门与
20、管材管件选型设计2.7.1阀门选型设计工艺系统阀门应满足输送LNG的压力和流量要求,同时必须具备耐-196 C的低 温性能。常用的LNG阀门主要有增压调节阀、减压调节阀、紧急切断阀、低温截止 阀、安全阀、止回阀等。阀门材料为 0Cr18Ni9。2. 7. 2管材、管件、法兰选型设计介质温度20 C的管道采用输送流体用不锈钢无缝钢管 (GB/T14976 2002), 材质为0Cr18Ni9。管件均采用材质为0crl8Ni9的无缝冲压管件(GB/T12459 90)。 法兰采用凹凸面长颈对焊钢制管法兰(HG20592 97),其材质为0Cr18Ni9 。法兰密封垫片采用金属缠绕式垫片,材质为0c
21、rl8Ni9。紧固件采用专用双头螺柱、螺母,材 质为 0Crl8Ni9。介质温度-20 C的工艺管道,当公称直径 w 200mm时,采用输送流体用无缝 钢管(GB/T8163 1999),材质为20号钢;当公称径200mm时采用焊接钢管 (GB/T3041 2001),材质为Q235B。管件均采用材质为20号钢的无缝冲压管件 (GB/T12459 90)。法兰采用凸面带颈对焊钢制管法兰(HG20592 97),材质为20 号钢。法兰密封垫片采用柔性石墨复合垫片 (HG20629 97)。LNG工艺管道安装除必要的法兰连接外,均采用焊接连接。低温工艺管道用聚 氨酯绝热管托和复合聚乙烯绝热管壳进行
22、绝热。碳素钢工艺管道作防腐处理。2. 7. 3冷收缩问题LNG管道通常采用奥氏体不锈钢管,材质为 0crl8Ni9 ,虽然其具有优异的低温 机械性能,但冷收缩率高达0. 003。站区LNG管道在常温下安装,在低温下运行, 前后温差高达180 C,存在着较大的冷收缩量和温差应力,通常采用门形”补偿装置补偿工艺管道的冷收缩。3. 8工艺控制点的设置LNG气化站的工艺控制系统包括站内工艺装置的运行参数采集和自动控制、远 程控制、联锁控制和越限报警。控制点的设置包括以下内容:卸车进液总管压力;空温式气化器出气管压力与温度;水浴式天然气加热器出气管压力与温度;LNG储罐的液位、压力与报警联锁;BOG加热
23、器压力;调压器后压力;出站流量;加臭机(自带仪表控制)。2. 9消防设计LNG气化站的消防设计根据 CB50028 93城镇燃气设计规范(2002年 版)LPG部分进行。在LNG储罐周围设置围堰区,以保证将储罐发生事故时对周围 设施造成的危害降低到最小程度。在 LNG储罐上设置喷淋系统,喷淋强度为 0. 15L/(s m2),喷淋用水量按着火储罐的全表面积计算,距着火储罐直径1. 5倍范围内的相邻储罐按其表面积的 50%计算。水枪用水量按GBJ1687建筑设计防 火规范(2001年版)和GB50028-93城镇燃气设计规范(2002年版)选取。 3运行管理 3.1运行基本要求LNG气化站运行的
24、基本要求是:防止LNG和气态天然气泄漏从而与空气形成 爆炸性混合物。消除引发燃烧、爆炸的基本条件,按规范要求对LNG工艺系统与设备进行消防保护。防止LNG设备超压和超压排放。防止 LNG的低温特性和 巨大的温差对工艺系统的危害及对操作人员的冷灼伤。3. 2工艺系统预冷在LNG气化站竣工后正式投运前,应使用液氮对低温系统中的设备和工艺管道 进行干燥、预冷、惰化和钝化。预冷时利用液氮梢车阀门的开启度来控制管道或设 备的冷却速率/min。管道或设备温度每降低20C,停止预冷,检查系统气密性 和管道与设备的位移。预冷结束后用 LNG储罐内残留的液氮气化后吹扫、置换常温 设备及管道,最后用LNG将储罐中
25、的液氮置换出来,就可正式充装LNG进行供气。 3. 3运行管理与安全保护 3.3. 1LNG储罐的压力控制正常运行中,必须将LNG储罐的操作压力控制在允许的范围内。 华南地区LNG 储罐的正常工作压力范围为0. 30. 7MPa,罐内压力低于设定值时,可利用自增压气化器和自增压阀对储罐进行增压。增压下限由自增压阀开启压力确定,增压上限由自增压阀的自动关闭压力确定,其值通常比设定的自增压阀开启压力约高 15 %例如:当LNG用作城市燃气主气源时,若自增压阀的开启压力设定为0. 6MPa,自增压阀的关闭压力约为 0. 69MPa ,储罐的增压值为0. 09MPa。储罐的最高工作压力由设置在储罐低温
26、气相管道上的自动减压调节阀的定压值 (前压)限定。当储罐最高工作压力达到减压调节阀设定开启值时,减压阀自动开启卸 压,以保护储罐安全。为保证增压阀和减压阀工作时互不干扰,增压阀的关闭压力 与减压阀的开启压力不能重叠,应保证 0. 05MPa以上的压力差。考虑两阀的制造 精度,合适的压力差应在设备调试中确定。3. 3. 2LNG储罐的超压保护LNG在储存过程中会由于储罐的 环境漏热'而缓慢蒸发(日静态蒸发率体积分数 <0. 3%),导致储罐的压力逐步升高,最终危及储罐安全。为保证储罐安全运行, 设计上采用储罐减压调节阀、压力报警手动放散、安全阀起跳三级安全保护措施来 进行储罐的超压
27、保护。其保护顺序为:当储罐压力上升到减压调节阀设定开启值时,减压调节阀自动 打开泄放气态天然气;当减压调节阀失灵,罐内压力继续上升,达到压力报警值时, 压力报警,手动放散卸压;当减压调节阀失灵且手动放散未开启时,安全阀起跳卸 压,保证LNG储罐的运行安全。对于最大工作压力为 0. 80MPa的LNG储罐,设 计压力为0. 84MPa,减压调节阀的设定开启压力为 0. 76MPa,储罐报警压力为 0. 78MPa ,安全阀开启压力为 0. 80MPa,安全阀排放压力为 0. 88MPa。3.3. 3LNG的翻滚与预防LNG在储存过程中可能出现分层而引起翻滚,致使LNG大量蒸发导致储罐压力 迅速升
28、高而超过设计压力7,如果不能及时放散卸压,将严重危及储罐的安全。大量研究证明,由于以下原因引起 LNG出现分层而导致翻滚:储罐中先后充注的LNG产地不同、组分不同而导致密度不同。先后充注的LNG温度不同而导致密度不同。先充注的LNG由于轻组分甲烷的蒸发与后充注的 LNG密度不同。要防止LNG产生翻滚引发事故,必须防止储罐内的 LNG出现分层,常采用如 下措施。将不同气源的LNG分开储存,避免因密度差引起LNG分层。为防止先后注入储罐中的LNG产生密度差,采取以下充注方法:a.梢车中的LNG与储罐中的LNG密度相近时从储罐的下进液口充注;b.梢车中的轻质LNG充注到重质LNG储罐中时从储罐的下进液口充注;c.梢车中的重质LNG充注到轻质LNG储罐中时,从储罐的上进液口充注。储罐中的进液管使用混合喷嘴和多孔管,可使新充注的LNG与原有LNG充分混合,从而避免分层。对长期储存的LNG ,采取定期倒罐的方式防止其因静止而分层。3. 3. 4运行监控与安全保护LNG储罐高、
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论