




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、杨辉三角1目的要求1了解有关杨辉三角的简史,掌握杨辉三角的根本性质。2通过研究杨辉三角横行的数字规律,培养学生由特殊到一般的归纳猜想能力。3通过小组讨论,培养学生发现问题。探究知识、建构知识的研究型学习习惯及合作化学习的团队精神。内容分析本课的主要内容是总结杨辉三角的三个根本性质及研究发现杨辉三角横行的假设干规律。杨辉三角的三个根本性质主要是二项展开式的二项式系数即组合数的性质,它是研究杨辉三角其他规律的根底。杨辉三角横行的数字规律主要包括横行各数之间的大小关系。组合关系以及不同横行数字之间的联系。研究性课题,主要是针对某些数学问题的深入探讨,或者从数学角度对某些日常生活中和其他学科中出现的问
2、题进行研究。目的在于培养学生的创新精神和创造能力。它要求教师给学生提供研究的问题及背景,让学生自主探究知识的发生开展过。从问题的提出、探索的过程及猜想的建立均主要由学生自主完成,教师不可代替,但作为组织者,可提供必要指导。教师首先简介杨辉三角的相关历史,激发学生的民族自豪感和创造欲望,然后引导学生总结有关杨辉三角的根本知识研究的根底及介绍发现数字规律的主要方法研究的策略,并类比数列的通项及求和,让学生对n阶杨辉三角进行初步的研究尝试活动,让学生充分展开思维进入研究状态。以下主要分小组合作研究杨辉三角的横行数字规律,重点发现规律,不必在课堂上证明。教学过程一回忆旧知1用电脑展示贾宪三角图、朱泄杰
3、的古法七乘方图、帕斯卡三角图附后,同时播放用古代民族乐器演奏的音乐。教师介绍杨辉三角的简史:北宋人贾宪约1050年首先使用“贾宪三角进行高次开方运算,南宋数学家杨辉在?详解九章算法?1961年记载并保存了“贾宪三角,故称杨辉三角。元朝数学家朱世杰在?四元玉鉴?1303年扩充了“贾宪三角成“古法七乘方图。在欧洲直到1623年以后,法国数学家帕斯卡在13岁时发现了“帕斯卡三角。2用电脑展示15阶杨辉三角或事先印好15阶杨辉三角分发给学生。对照杨辉三角,回忆高二下学期学过的杨辉三角的构造及根本性质,并由学生表达。1°与二项式定理的关系:杨辉三角的第n行就是二项式展开式的系数列。2°
4、;对称性:杨辉三角中的数字左、右对称,对称轴是杨辉三角形底边上的“高,即。3°结构特征:杨辉三角除斜边上1以外的各数,都等于它“肩上的两数之和,即。二分组研究杨辉三角横行规律将全班学生按前后排四或五人一组分成假设干研究小组1介绍数学发现的方法:杨辉三角中蕴涵了许多优美的规律。古今中外,许多数学家如贾宪、杨辉、朱世杰、帕斯卡、华罗庚等都曾深入研究过,并将研究结果应用于其他工作。他们研究的方法可以归纳为: 15阶杨辉三角2学生尝试探索活动。1n阶杨辉三角中共有多少个数?2n阶杨辉三角的通项公式是什么?即n阶杨辉三角中的第k行第r个数是什么?3n阶杨辉三角的第k行各
5、数的和是多少?所有数的和是多少?学生独立思考后,由学生发言,得出结论。n阶杨辉三角中共有个数,第n+2行第3个数;通项公式为,。3按研究横行数字规律的方向开展研究工作,工作的重点是发现规律。教师巡视指导,必要时可参与某小组的讨论活动。最后由小组代表陈述研究结果及建立猜想的大致思路。1杨辉三角的第2k行中第k个数最大;即;第2k1行中第是k个数与第kl个数相等且最大,即;2k阶杨辉三角中最大数为,2k1阶杨辉三角中的最大数为。 2杨辉三角中第行的所有数都是奇数kN*,即为奇数m=0,1,;第行的所有数除两端的1以外都是偶数kN*,即为偶数r=1,2,;其他行的所有数中,一定既有偶数又
6、有除1以外的奇数。3第pp为素数行除去两端的数字1以外的所有数都能被p整除,其逆命题也成立。即对任意r1,2,n-1,都有是素数。4将第n行的所有数按从左到右的顺序合并在一起得到的多位数等于。5第2n行的第n个数是第2n-1行的第n-1个数的2倍,即。 三小结 1请学生小结自己在研究过程中的体验:如何选定研究线索,使用什么方法发现结论,碰到什么困难,如何突破创新等。2教师标准对杨辉三角各性质的表述,小结探究思路。布置作业如图,每一幅小图中的圆的个数及圆上的点、线段、三角形、四边形、五边形、六边形的数目有一定的变化规律,研究杨辉三角,你能找出两者间的关系吗? 附1:
7、证明:当时,是奇数。证明:对任何一个正整数m,都存在唯一的自然数与正奇数,使。设,。当时,上式的分子、分母都是奇数,且分式值是正整数,是奇数。附2: 杨辉三角2目的要求 1探索杨辉三角斜行的数字规律,并应用规律求一类数列的前n项和;2探索杨辉三角与其他数学对象之间的联系,培养学生应用数学知识方法的能力。 内容分析本节课的主要内容是继续研究杨辉三角的数字规律及其与其他数学问题之间的联系。1从研究平行于杨辉三角形“两腰的斜边上的数字规律的过程中,我们可以发现朱世杰恒等式:。这个规律其实是杨辉三角第三条根本性质的推广形式。应用朱世杰恒等式,可以求出的和式值。2研究经过两
8、数,或的斜边上的数字规律,可以得到著名的斐波那契数列。由斐波那契数列的通项公式,可得组合数的性质:,。3将阶杨辉三角形中去掉所有的偶数,剩下的图形类似于分形几何中的谢尔宾斯基三角形如图,这种三角形是研究自然界大量存在的不规那么现象海岸线性状、大气运动、海洋湍流、野生生物群体涨落,乃至股市升降等的崭新教学工具。4教科书中的正六棱柱形木板滚球实验说明杨辉三角与概率统计之间存在联系。讲授时,老师应制作一个教具,并用16个小球。做实验假设干次,然后引导学生挖掘实验结果与杨辉三角之间的关系,并用排列组合知识与概率知识加以解释。教学过程1用电脑展示8阶杨辉三角图,以备用上节课主要是研究杨辉三角横行的数字规
9、律,这节课首先来研究斜行的数字规律如图。 2学生分小组研究,得出的结果可能是:1n阶杨辉三角形的第k+1条斜边上的数从左到右,从上到下组成的数列是:。2上述数列的和为:。3引导学生证明上述等式,并介绍有关朱世杰研究上述组合数恒等式的情况1证明过程: 2朱世杰问题如象招数问题:以立方招兵,初招方面三尺,次招方面转多一尺,今招十五日,问招兵几何?用数列语言来说就是:第k日招兵,共招n日,一共招兵多少?问题可转化为求和: 。4引导学生观察8阶杨辉三角表。研究图中标出的斜行各数之间的关系1将各斜边的数字相加后按从上而下的顺序列出:1,1,2,3,5,8,13,21,34。2研究上述数列的规律
10、后,可以猜想:无穷阶杨辉三角类似的数列为:3引导学生将表示成组合数的和,并证明。,根据杨辉三角的根本性质3可以推出。4指出上述数列是斐波那契数列,该数列有广泛应用。5观察以下图15阶杨辉三角中,各小正三角形内的数有什么特点?并推广到阶杨辉三角中 1自上而下第k个正三角形内的数都是偶数,即都是偶数kN*。2第k个正三角形两腰外的第一条斜边上的数都是奇数,即都是奇数kN*。这条性质和上节课推出的性质“第行上的所有数中既有偶数也有非1的奇数相吻合。3阶杨辉三角中,偶数与奇数,哪个更多?阶杨辉三角中,共有个奇数,共有个偶数kN*,试比较与的大小留课外思考。6演示实验教师或学生将16个均匀小球
11、逐个平稳地放入如图的教具内。统计最后各个矩形框内的小球个数。连续做三次实验,分析统计结果;并将结果推广到有n+1层的教具,个小球的情形,并给出合理解析。1设小球从第一层落入第n层下面的第k个矩形框的通道条数为Fn,k,那么根据教具的对称性及小球的均匀性,可建立如下递推模式:F1,1=1,Fn,k=Fn,n-k+1,Fn+1,k=Fn,k-1+Fn,k,k=1,2,n+1,规定Fn,0=Fn,n+1=0nN*。 类比杨辉三角形的根本性质:可猜想:。可以用数列方法证明结论为真,留课后思考故在理想状态下,个小球从第一层落到第n层,从左到右各矩形框内的小球个数分别为。2小球从某层落到下层可看作进行一次随机试验,其中小球向左边落入的概率为。那么小球从第一层落到第n+1层可以看成是进行n次独立重复试验,小球最后落入第k个矩形框内可以看成是小球从左边落入恰好发生n-k+1次,其概率为。在大量重复试验下,统计规律为:个小球落到第n+1层的第k个矩形框内的小球个数为。7小结杨辉三角奥秘无穷,只要大家从不同角度运用合情推理及逻辑推理的方法,一定会发现更多
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 黑龙江七台河公开招聘农村(村务)工作者笔试题含答案2024年
- 宁夏固原公开招聘农村(村务)工作者笔试题含答案2024年
- 新建120万吨大宗固废处置综合利用项目可行性研究报告-立项备案
- 年产300套SVG动态无功补偿装置研发生产项目可行性研究报告-立项备案
- 诚信教育:诚信与考试主题班会
- 自动控制原理课程设计报告
- 天津静海县2025年公开招聘农村(村务)工作者笔试题带答案分析
- 城区土地押金合同协议
- 大学生心理教育
- 租赁农村屋顶合同协议
- 义务兵家庭优待金审核登记表
- GA 255-2022警服长袖制式衬衣
- GB/T 5202-2008辐射防护仪器α、β和α/β(β能量大于60keV)污染测量仪与监测仪
- GB/T 39560.4-2021电子电气产品中某些物质的测定第4部分:CV-AAS、CV-AFS、ICP-OES和ICP-MS测定聚合物、金属和电子件中的汞
- GB/T 3452.4-2020液压气动用O形橡胶密封圈第4部分:抗挤压环(挡环)
- 计划生育协会基础知识课件
- 【教材解读】语篇研读-Sailing the oceans
- 抗肿瘤药物过敏反应和过敏性休克
- 排水管道非开挖预防性修复可行性研究报告
- 交通工程基础习习题及参考答案
- 线路送出工程质量创优项目策划书
评论
0/150
提交评论