排队论是专门研究带有随机因素_第1页
排队论是专门研究带有随机因素_第2页
排队论是专门研究带有随机因素_第3页
排队论是专门研究带有随机因素_第4页
排队论是专门研究带有随机因素_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、Queueing Theory2008 Queueing theory definitionsl(Bose) “the basic phenomenon of queueing arises whenever a shared facility needs to be accessed for service by a large number of jobs or customers.”l(Kleinrock) “We study the phenomena of standing, waiting, and serving, and we call this study Queueing

2、Theory. Any system in which arrivals place demands upon a finite capacity resource may be termed a queueing system.”l(Mathworld) “The study of the waiting times, lengths, and other properties of queues.”l排队论是专门研究带有排队论是专门研究带有随机随机因素,产生拥挤现象的优化理因素,产生拥挤现象的优化理论。也称为论。也称为随机随机服务服务系统。系统。 Applications of Queue

3、ing TheorylTelecommunicationslDetermining the sequence of computer operationslPredicting computer performancelOne of the key modeling techniques for computer systems / networks in generallVast literature on queuing theorylNicely suited for network analysislTraffic control lAirport traffic, airline t

4、icket saleslLayout of manufacturing systemslHealth services (eg. control of hospital bed assignments) Queuing theory for studying networkslView network as collections of queues lFIFO data-structures lQueuing theory provides probabilistic analysis of these queueslExamples: lAverage length (buffer) lA

5、verage waiting timelProbability queue is at a certain length lProbability a packet will be lost lUse Queuing models to lDescribe the behavior of queuing systemslEvaluate system performanceModel Queuing System Queuing System Queue Server Customers Time TimeArrival eventDelayBegin serviceBegin service

6、Arrival eventDelayActivityActivityEnd serviceEnd serviceCustomer n+1Customer nInterarrivalCharacteristics of queuing systems Kendall Notation 1/2/3(/4/5/6)nArrival DistributionnService DistributionnNumber of servers nTotal storage (including servers) (infinite if not specified) nPopulation Size (inf

7、inite if not specified) nService Discipline (FCFS/FIFO) DistributionslM: stands for Markovian / Poisson , implying exponential distribution for service times or inter-arrival times. lD: Deterministic (e.g. fixed constant) lEk: Erlang with parameter klHk: Hyperexponential with param. klG: General (an

8、ything) Poisson process & exponential distributionlInter-arrival time t (time between arrivals) in a Poisson process follows exponential distribution with parameter (mean)l无后效性无后效性 不管多长时间不管多长时间( t)已经过去,逗留已经过去,逗留时间的概率分布与下一个事件的相同时间的概率分布与下一个事件的相同1)()Pr(tEett fT(t)t1)(TEExampleslM/M/1: lPoisson arri

9、vals and exponential service, 1 server, infinite capacity and population, FCFS (FIFO)lthe simplest realistic queuelM/M/m/mlSame, but lm servers, lm storage (including servers)lEx: telephone Analysis of M/M/1 queuelGiven: : Arrival rate (mean) of customers (jobs) (packets on input link) m m: Service

10、rate (mean) of the server (output link) lSolve:lL: average number in queuing systemlLq average number in the queue “1”lW: average waiting time in whole systemlWq average waiting time in the queue “1/m m”M/M/1 queue model m m m1WqWLLqDerivation 012k-1kk+1.PoP1Pk -1PkmPkmPk +1mP1mP2P0mP1P1mP2PkmPk+1si

11、nce all probability sum to onePkkP0mkkP0mkP0k 0 1Solving W, Wq and Lq For stability, mean arrival rate must be less than mean service rate Utility factor 1m2,111,(1)(1)(1)qqnnLLWWPmmmResponse Time vs. Arrivalsm1WWaiting vs. Utilization00.050.10.150.20.2500.20.40.60.811.2W(sec) ExamplelOn a network r

12、outer, measurements show lthe packets arrive at a mean rate of 125 packets per second (pps) lthe router takes about 2 millisecs to forward a packet lAssuming an M/M/1 modellWhat is the probability of buffer overflow if the router had only 13 bufferslHow many buffers are needed to keep packet loss below one packet per million?ExamplenArrival rate = 125 ppsnService rate = 1/0.002 = 500 ppsnRouter utilization = / = 0.25nProb. of n packets in router =nMean number of packets in router =nn)25. 0(75. 0)1 (33. 057. 025. 01ExamplenProbab

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论