




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第2讲排列与组合【2014年高考浙江会这样考】1以实际生产、生活为背景考查排列、组合问题,多以选择题、填空题的形式出现2在解答题中,排列、组合知识作为基础与概率、统计、离散型随机变量结合命题,题目多为中档题不同 顺序 n(n1)(n2)(nm1) 不同 【助学微博】 一个区别排列与组合,排列与组合最根本的区别在于“有序”和“无序”取出元素后交换顺序,如果与顺序有关是排列,如果与顺序无关即是组合解决排列组合问题可遵循“先组合后排列”的原则,区分排列组合问题主要是判断“有序”和“无序”,更重要的是弄清怎样的算法有序,怎样的算法无序,关键是在计算中体现“有序”和“无序”要能够写出所有符合条件的排列或
2、组合,尽可能使写出的排列或组合与计算的排列数相符,使复杂问题简单化,这样既可以加深对问题的理解,检验算法的正确与否,又可以对排列数或组合数较小的问题的解决起到事半功倍的效果四字口诀求解排列组合问题的思路:“排组分清,加乘明确;有序排列,无序组合;分类相加,分步相乘”答案D答案B3现安排甲、乙、丙、丁、戊5名同学参加上海世博会志愿者服务活动,每人从事翻译、导游、礼仪、司机四项工作之一,每项工作至少有一人参加甲、乙不会开车但能从事其他三项工作,丙、丁、戊都能胜任四项工作,则不同安排方案的种数是 ()A152 B126 C90 D54答案B4(2011全国)某同学有同样的画册2本,同样的集邮册3本,
3、从中取出4本赠送给4位朋友,每位朋友1本,则不同的赠送方法共有 ()A4种 B10种 C18种 D20种答案B5(2013宿州模拟)四名优等生保送到三所学校去,每所学校至少得一名,则不同的保送方案有_种答案36考向一排列问题【例1】 用0,1,2,3,4,5六个数字按下列要求排成没有重复数字的6位数,问分别有多少种排法?(1)0不在个位;(2)1与2相邻;(3)1与2不相邻;(4)0与1之间恰有两个数;(5)1不在个位;(6)从左向右偶数数字从小到大排列审题视点 这是一个排列问题,一般情况下,从受到限制的特殊元素开始考虑,或从特殊的位置开始讨论方法锦囊 解决排列类应用题时,对于相邻问题,常用“
4、捆绑法”;对于不相邻问题,常用“插空法”(特殊元素后考虑);对于“在”与“不在”的问题,常常使用“直接法”或“排除法”(特殊元素先考虑)【训练1】 有4名男生、5名女生,全体排成一行,问下列情形各有多少种不同的排法?(1)甲不在中间也不在两端;(2)甲、乙两人必须排在两端;(3)男女相间考向二组合问题【例2】 某课外活动小组共13人,其中男生8人,女生5人,并且男、女生各指定一名队长现从中选5人主持某种活动,依下列条件各有多少种选法?(1)只有一名女生;(2)两队长当选;(3)至少有一名队长当选;(4)至多有两名女生当选;(5)既要有队长,又要有女生当选审题视点 解组合问题时,常从特殊元素入手
5、方法锦囊 解决组合问题两类题型的方法(1)“含有”或“不含有”某些元素的组合题型:“含”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中去选取(2)“至少”或“最多”含有几个元素的组合题型:解这类题要谨防重复与漏解通常用直接法分类复杂时,考虑逆向思维,用间接法处理【训练2】 汽贸公司有甲、乙、丙三种不同型号的汽车分别为20辆,10辆,10辆,某运输公司要从中购买5辆,问下列情况下分别有多少种选购方式?(每两辆汽车都视为不同元素)(1)选购甲2辆,乙2辆,丙1辆(用数字表示)(2)选购甲至少2辆(用组合数表示即可)(3)选购每种型号的汽车至少1辆(用组合数表
6、示)考向三排列、组合的综合应用【例3】 有4个不同的球,四个不同的盒子,把球全部放入盒内(1)共有多少种放法?(2)恰有一个盒不放球,有多少种放法?(3)恰有两个盒不放球,有多少种放法?审题视点 (1)可直接用分步乘法计数原理(2)问题转化为:“4个球,三个盒子,每个盒子都要放球,共有几种放法?”(3)问题转化为:“4个球,两个盒,每个盒必放入球,有几种放法?”方法锦囊 排列、组合综合题目,一般是将符合要求的元素取出(组合)或进行分组,再对取出的元素或分好的组进行排列其中分组时,要注意“平均分组”与“不平均分组”的差异及分类的标准【训练3】 (2013潍坊五校联考)数字1,2,3,4,5,6按
7、如图形式随机排列,设第一行这个数为N1,N2、N3分别表示第二、三行中的最大数,则满足N1N2N3的所有排列的个数是_答案240 热点突破23有限制条件的排列组合问题【命题研究】 通过对近三年高考试题分析,可以看出有限制条件的排列组合问题,高考每年必考,主要考查以下问题:选派问题、抽样问题、几何问题、集合问题、分组问题等,题型多是选择题与填空题,预测2014年高考对本部分内容的考查仍会保持运用排列、组合解决实际或数学问题的思路,涉及数据不大,难度较易,可能会与概率问题结合【真题探究】 (2012北京)从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为()A
8、24 B18 C12 D6教你审题 由组成无重复数字的三位数且为奇数知,个位必是奇数,因此,个位优先排;又由于0不能放在首位和个位,因此应分选0和不选0两类进行讨论答案 B备考 备考中要掌握解决排列与组合问题的解题思路、方法与思想:思路、方法:(1)直接法:先满足特殊要求,再考虎其他元素,即“特殊元素优先”;(2)间接法:先不考虑附加条件算出排列或组合数,再减去不符合要求的排列数或组合数对于复杂问题不仅要分类还要分步求解,又要采用“整体或局部排除”方法:分类法与分步法;元素分析法和位置分析法;捆绑法和插空法;隔板法和有序分组与无序分组法等方法思想:分类讨论的思想、等价转化思想、特殊优先思想、正难则反思想经典考题训练【试一试1】 2位男生和3位女生共5位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是 ()A60 B48 C42 D36答案B【试一试2】 (2012湖北)回文数是指从左
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 接受静脉-动脉体外膜肺氧合治疗的难治性心源性休克患者临床预测模型的开发和验证
- 碳足迹评估与农产品-全面剖析
- 课题申报书:新时代高校组织员核心素养和提升路径研究
- 课题申报书:新时代“枫桥经验”视阈下高校学生社区优化路径建设研究
- 课题申报书:新高考模式下化学教学策略的研究
- 课题申报书:协同提质背景下县域课程资源建设与共享的实践研究
- 野生动物疫源疫病防控监测企业ESG实践与创新战略研究报告
- 建筑材料制品成型机械企业县域市场拓展与下沉战略研究报告
- 功能陶瓷制品企业ESG实践与创新战略研究报告
- 双人脚踏自行车企业ESG实践与创新战略研究报告
- (高清版)DB1331∕T 072-2024 《雄安新区高品质饮用水工程技术规程》
- 2025年金丽衢十二校高三语文第二次模拟联考试卷附答案解析
- 广东省深圳市福田区2023-2024学年六年级下学期英语期中试卷(含答案)
- 2023-2024学年广东省广州七中七年级(下)期中数学试卷(含答案)
- 2025年北京城市排水集团有限责任公司招聘笔试参考题库含答案解析
- 课件-2025年春季学期 形势与政策 第一讲-加快建设社会主义文化强国
- 2025年山东惠民县农业投资发展限公司招聘10人历年高频重点提升(共500题)附带答案详解
- 大学美育知到智慧树章节测试课后答案2024年秋长春工业大学
- 《基于嵌入式Linux的农业信息采集系统设计与研究》
- 外科创伤处理-清创术(外科课件)
- 小型手推式除雪机毕业设计说明书(有全套CAD图)
评论
0/150
提交评论